初中數(shù)學(xué)教學(xué)設(shè)計必備【15篇】
作為一名教師,時常需要用到教學(xué)設(shè)計,教學(xué)設(shè)計是一個系統(tǒng)設(shè)計并實現(xiàn)學(xué)習(xí)目標的過程,它遵循學(xué)習(xí)效果最優(yōu)的原則嗎,是課件開發(fā)質(zhì)量高低的關(guān)鍵所在。那么什么樣的教學(xué)設(shè)計才是好的呢?下面是小編精心整理的初中數(shù)學(xué)教學(xué)設(shè)計,僅供參考,大家一起來看看吧。
初中數(shù)學(xué)教學(xué)設(shè)計1
一、內(nèi)容和內(nèi)容解析
平行四邊形是“空間與圖形”領(lǐng)域中最基本的幾何圖形,它在生活中有著十分廣泛的應(yīng)用,這不僅表現(xiàn)在日常生活中有許多平行四邊形的圖案,還包含其性質(zhì)在生產(chǎn)、生活各領(lǐng)域的實際應(yīng)用。
平行四邊形,是建立在前面學(xué)習(xí)了四邊形的概念和性質(zhì)的基礎(chǔ)之上,將要學(xué)習(xí)的特殊的四邊形。本節(jié)課是平行四邊形的第一課時,主要研究平行四邊形的概念和邊、角的性質(zhì)。
關(guān)于平行四邊形的概念,在小學(xué),學(xué)生已經(jīng)學(xué)過,并不會感到生疏,但對于這個概念的本質(zhì)屬性,理解的并不是十分深刻,所以,本節(jié)課的學(xué)習(xí),并不是簡單的重復(fù)。本節(jié)課,平行四邊形的定義采用的是內(nèi)涵定義法,即“種概念+屬差=被定義的概念”。在平行四邊形的定義中,大前提是“四邊形(種概念)”,條件是“兩組對邊分別平行(屬差)”。“兩組對邊分別平行”是平行四邊形獨有的、用以區(qū)別于一般四邊形的本質(zhì)屬性,這也是平行四邊形概念的核心之所在。平行四邊形的概念,揭示了平行四邊形與四邊形的隸屬關(guān)系、區(qū)別與聯(lián)系,反映了平行四邊形的本質(zhì)屬性。同時,它既是平行四邊形的判定,又可以作為平行四邊形的一個性質(zhì)。
關(guān)于平行四邊形邊、角的性質(zhì),“平行四邊形的對邊相等”相對于定義中的“兩組對邊分別平行”,是由位置關(guān)系向數(shù)量關(guān)系的一種延伸;“平行四邊形的對角相等”相對于“兩組對邊分別平行”,是由“相鄰的角互補”產(chǎn)生的思維的一種深化。同時,兩條性質(zhì)的探究,經(jīng)歷的是“感知、猜想、驗證、概括、證明”的認知過程;兩條性質(zhì)的研究,先從邊分析,再從角分析,再到下一節(jié)課的從對角線分析,提供的是研究幾何圖形性質(zhì)的一般思路;兩條性質(zhì)的證明,滲透的是將四邊形問題轉(zhuǎn)化為三角形問題的一種轉(zhuǎn)化思想,而添加對角線,介紹的是將四邊形問題轉(zhuǎn)化為三角形問題的一種常用的轉(zhuǎn)化手段。
在本章的后續(xù)學(xué)習(xí)中,對于幾種特殊的四邊形,其定義均采用的是內(nèi)涵定義法,并且矩形和菱形的`定義,均以平行四邊形作為種概念,所以平行四邊形的概念作為“核心概念”當(dāng)之無愧。關(guān)于平行四邊形的性質(zhì),也是后續(xù)學(xué)習(xí)矩形、菱形、正方形等知識的基礎(chǔ),這些特殊平行四邊形的性質(zhì),都是在平行四邊形性質(zhì)基礎(chǔ)上擴充的,它們的探索方法,也都與平行四邊形性質(zhì)的探索方法一脈相承,因此,平行四邊形的性質(zhì),在后續(xù)的學(xué)習(xí)中,也是處于核心地位。
教學(xué)重點:平行四邊形的概念和性質(zhì)。
二、目標和目標解析
。1)教學(xué)目標:
①掌握平行四邊形的概念及性質(zhì)。
、趯W(xué)會用分析法、綜合法解決問題。
、垠w會特殊與一般的辯證關(guān)系。
、苤鸩金B(yǎng)成良好的個性思維品質(zhì)。
(2)目標解析:
、偈箤W(xué)生掌握平行四邊形的概念,掌握平行四邊形的對邊相等,對角相等的性質(zhì),會根據(jù)概念或性質(zhì)進行有關(guān)的計算和證明。
、谕ㄟ^有關(guān)的證明及應(yīng)用,教給學(xué)生一些基本的數(shù)學(xué)思想方法。使學(xué)生逐步學(xué)會分別從題設(shè)或結(jié)論出發(fā),尋求論證思路,學(xué)會用綜合法證明問題,從而提高學(xué)生分析問題解決問題的能力。
、弁ㄟ^四邊形與平行四邊形的概念之間和性質(zhì)之間的聯(lián)系與區(qū)別,使學(xué)生認識特殊與一般的辯證關(guān)系,個性與共性之間的關(guān)系等。使學(xué)生體會到事物之間總是互相聯(lián)系又相互區(qū)別的,進一步培養(yǎng)辯證唯物主義觀點。
、芡ㄟ^對平行四邊形性質(zhì)的探究,使學(xué)生經(jīng)歷觀察、分析、猜想、驗證、歸納、概括的認知過程,培養(yǎng)學(xué)生良好的個性思維品質(zhì)。
初中數(shù)學(xué)教學(xué)設(shè)計2
新學(xué)期已到來,我們又要投入到緊張、繁忙而有序地教育教學(xué)工作中,使自己今后的教學(xué)工作中能有效地、有序地貫徹新的教育精神,圍繞我校新學(xué)期的工作計劃要求制定初中一年級數(shù)學(xué)教學(xué)設(shè)計方案:
一、教材分析:
本學(xué)期是本年級學(xué)生初中學(xué)習(xí)階段的第二學(xué)期、新授課程主要有相交線與平行線、平面直角坐標系、三角形、二元一次方程組、不等式與不等式組、數(shù)據(jù)的收集、現(xiàn)行教材、教學(xué)大綱要求學(xué)生從身邊的實際問題出發(fā),乘坐觀察、思考、探究、討論、歸納之舟,去探索、發(fā)現(xiàn)數(shù)學(xué)的奧妙,用學(xué)到的本領(lǐng)去解決復(fù)習(xí)鞏固、綜合運用、拓展探索等不同層次的問題、教師在靈活選用現(xiàn)有教材的基礎(chǔ)上,應(yīng)適度引用新例,把初中數(shù)學(xué)各單元的知識明晰化、條理化、規(guī)律化,激勵學(xué)生自主、合作、探究學(xué)習(xí),培養(yǎng)學(xué)習(xí)興趣和習(xí)慣品質(zhì)、
二、教學(xué)目標:
本學(xué)期的數(shù)學(xué)教學(xué)要從學(xué)生的實際問題出發(fā),積極引導(dǎo)學(xué)生觀察、思考、探究、討論、歸納數(shù)學(xué)問題,要鼓勵學(xué)生去探索、發(fā)現(xiàn)數(shù)學(xué)的奧妙,用學(xué)到的本領(lǐng)去解決復(fù)習(xí)鞏固、綜合運用、拓展探索等不同層次的問題、教學(xué)中既要注意知識的覆蓋面,關(guān)注中考的重點、熱點和難點,又要突出數(shù)學(xué)知識在社會、科技中的運用,讓學(xué)生在學(xué)習(xí)、練習(xí)中熟記知識要點、考試內(nèi)容,掌握應(yīng)試技巧和數(shù)學(xué)思想方法,提高綜合素質(zhì),培養(yǎng)創(chuàng)新意識和探索能力、在期末考試中力爭生均分87分左右,及格率75%以上,并將低分率控制到10%以下,綜合成績縣前五、
三、教學(xué)措施:
1、認真鉆研教材,積極捕捉課改信息,盡力倡導(dǎo)自主、合作、探究學(xué)習(xí),努力培養(yǎng)學(xué)生的學(xué)習(xí)興趣和個性品質(zhì)、
2、把握學(xué)生思想動態(tài),及時與學(xué)生溝通,搞好師生關(guān)系、
3、充分利用課堂教學(xué)時間,幫助學(xué)生理解教學(xué)重難點,訓(xùn)練考點、熱點,強化記憶,形成能力,提高成績、
4、改進教學(xué)方法,用掛圖,實物創(chuàng)設(shè)情景進行教學(xué),力求課堂的多樣化、生活化和開放化,力爭有更多的師生互動、生生互動的機會、
5、精講多練,在教學(xué)新知識的`同時,注重舊知識的復(fù)習(xí),使所學(xué)知識系統(tǒng)化,條理化,讓學(xué)生在練習(xí)、測試中鞏固提高,減少遺忘、
6、開辟第二課堂,在不加重學(xué)生負擔(dān)的前提下,積極引導(dǎo)學(xué)生閱讀課外書,促進學(xué)生自主、合作,探究學(xué)習(xí),培養(yǎng)興趣,提高能力、
7、加強培優(yōu)補中促差生的個別輔導(dǎo),因材施教,培養(yǎng)學(xué)生的個性特長、特別要多鼓勵后進生,提高他們的學(xué)習(xí)興趣,培養(yǎng)他們良好的學(xué)習(xí)習(xí)慣:
。1)課前預(yù)習(xí)習(xí)慣;
。2)積極思考,主動發(fā)言習(xí)慣;
。3)自主作業(yè)習(xí)慣;
。4)課后復(fù)習(xí)習(xí)慣。
初中數(shù)學(xué)教學(xué)設(shè)計3
一、教材內(nèi)容及設(shè)置依據(jù)
【教材內(nèi)容】本節(jié)教材的主要內(nèi)容是通過對有理數(shù)加法、減法的運算的回顧,學(xué)習(xí)包括分數(shù)和小數(shù)的有理數(shù)的加減混合運算,理解其方法;應(yīng)用有理數(shù)的加減混合運算,解決實際問題。
【設(shè)置依據(jù)】教材內(nèi)容的確定主要根據(jù)知識的社會作用性、教育性原則(對培養(yǎng)學(xué)生的數(shù)學(xué)思維、數(shù)學(xué)能力,以及形成辨證唯物主義世界觀的重要作用)、后繼教育原則(為進一步深造、參加實際工作和適應(yīng)日常生活準備條件)、可接受性原則(即考慮學(xué)生的認識水平、接受能力、生理心理特征,又要著眼于學(xué)生的不斷發(fā)展);還要與現(xiàn)實生活、科技發(fā)展相適應(yīng),逐步深透現(xiàn)代教學(xué)思想。
二、教材的地位和作用
本節(jié)內(nèi)容是在學(xué)習(xí)了有理數(shù)的加法、有理數(shù)的減法的基礎(chǔ)上學(xué)習(xí)的,是前面知識的延伸和加強,同時又是后面所要學(xué)習(xí)的有理數(shù)的乘法、除法及有理數(shù)的混合運算的基礎(chǔ),特別是減法可以轉(zhuǎn)化為加法為后面的除法可以轉(zhuǎn)化為乘法的學(xué)習(xí)提供了類比依據(jù)。也為后面學(xué)習(xí)代數(shù)式的合并同類項及有關(guān)的恒等變形奠定了基礎(chǔ),因此具有承上啟下的重要作用。
三、對重點、難點的處理
【對重點的處理】本節(jié)的重點是有理數(shù)加減混合運算的方法及在實際生活中的應(yīng)用。為了突出重點,教師應(yīng)盡量從實際問題引入、應(yīng)盡可能的在課堂上創(chuàng)設(shè)具體教學(xué)情境,注重使學(xué)生在具體情境中體會運算的方法。同時我們也可以根據(jù)學(xué)生的接受情況和每節(jié)課的具體情況,盡可能的把每節(jié)課的“課堂練習(xí)”和“習(xí)題”的內(nèi)容劃分成不同的板塊,如:
1、知識鞏固型
2、實際應(yīng)用型
3、方法多變型
4、知識拓展型等。
【對難點的處理】對于難點的處理,因為新教材“強調(diào)要給學(xué)生足夠的空間和時間”,因此教學(xué)時我們應(yīng)盡量從學(xué)生已有的生活經(jīng)驗和已有的知識經(jīng)驗出發(fā),或用“已知”去解決“未知”的思想引導(dǎo)學(xué)生,鼓勵學(xué)生大膽的猜測、交流,充分的探索。同時淡化形式,突出實質(zhì)(不出現(xiàn)代數(shù)和的定義,只是讓學(xué)生理解有理數(shù)的加減運算可以統(tǒng)一成加法以及加法運算可以寫成省略括號及前面加號的形式,重點是讓學(xué)生通過具體情境對“代數(shù)和”加以體會)
四、關(guān)于教學(xué)方法的選用
根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實際水平,本節(jié)課可采用的方法:
1、情境體驗:通過教師創(chuàng)設(shè)貼近學(xué)生生活實際的教學(xué)情境,讓學(xué)生融會到課堂中去,產(chǎn)生共鳴,激發(fā)興趣,鼓勵學(xué)生觀察、分析、探索,加深其對本節(jié)內(nèi)容的理解,培養(yǎng)學(xué)生解決問題的能力。
2、引導(dǎo)發(fā)現(xiàn)法:它符合辯證唯物主義中內(nèi)因與外因相互作用的觀點,符合教學(xué)論中的自覺性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則。引導(dǎo)發(fā)現(xiàn)法的關(guān)鍵是通過教師的引導(dǎo)啟發(fā),充分調(diào)動學(xué)生學(xué)習(xí)的主動性。
3、小組合作、探究討論:通過合作討論,使學(xué)生形成一個“學(xué)習(xí)共同體”,在這個共同體內(nèi)相互交流、相互溝通、相互啟發(fā)、相互補充,分享彼此的思考、經(jīng)驗和知識,交流彼此的情感、體驗和觀念,共同體驗成功的喜悅,使學(xué)生體會到集體的力量,形成合作的意識,產(chǎn)生合作的愿望。
五、關(guān)于學(xué)法的指導(dǎo)
“授人以魚,不如授人以漁”,在教給學(xué)生知識的同時,要教給他們好的學(xué)習(xí)方法,讓他們“會學(xué)習(xí)”在本節(jié)課的`教學(xué)中,在提出問題后,要鼓勵學(xué)生分析、探索、討論,確定出問題解決的辦法。通過小組探究交流,得到解決問題的不同方法,開拓了思路,培養(yǎng)了思維能力。同時意識到:數(shù)學(xué)是生活實際中的數(shù)學(xué)、大自然中的數(shù)學(xué),萌生了用數(shù)學(xué)解決實際問題的意識、愿望。
六、課時安排:1課時
教學(xué)程序:
一、復(fù)習(xí)鋪墊:
首先利用多媒體出示一組有關(guān)有理數(shù)的加法、減法的題目,讓學(xué)生進行速算比賽,看誰做的又對又快。
1、45+(-23)
2、9-(-5)
3、-28-(-37)
4、(-13)+0
5、(-29)+(-31)
6、(-16)-(-12)-24-(-18)
7、1.6-(-1.2)-2.58、(-42)+57+(-84)+(-23)
從四排學(xué)生中個推選一名學(xué)生代表板演6、7、8、題。
通過比賽的方式,符合學(xué)生的心理特點,迎合了學(xué)生好勝的心理,激起了學(xué)生學(xué)習(xí)的內(nèi)在動力,激發(fā)了學(xué)習(xí)的興趣。
然后教師與學(xué)生一起對題目進行評判,對優(yōu)勝的學(xué)生進行表揚,對其他學(xué)生加以鼓勵,使他們意識到“勝敗乃兵家常事”,關(guān)鍵要有信心,要有高昂的斗志。通過練習(xí),學(xué)生已在不知不覺中復(fù)習(xí)了有理數(shù)的加法、減法法則,特別是減法法則,加深了印象,這符合教學(xué)論中的鞏固性原則,為后面學(xué)習(xí)有理數(shù)的加減混合運算奠定了基礎(chǔ)。
二、新知探索:
1、出示引例1:一架飛機作特技表演,起飛后的高度變化如下表:高度變化記作
上升4.5千米+4.5千米
下降3.2千米-3.2千米
上升1.1千米+1.1千米
下降1.4千米-1.4千米
此時飛機比起飛點高了多少米?
讓學(xué)生分組探究討論,讓學(xué)生發(fā)表自己的見解,不難得出兩種算法:
、4.5+(-3.2)+1.1+(-1.4)②4.5-3.2+1.1-1.4
。1.3+1.1+(-1.4)=1.3+1.1-1.4
=2.4+(-1.4)=2.4-1.4
。1千米=1千米
教師隨之提出問題:比較以上兩種算法,你發(fā)現(xiàn)了什么?通過學(xué)生的合作討論、教師的引導(dǎo)、規(guī)納、總結(jié)可得出:加減法混合運算可以統(tǒng)一成加法;加法運算可以寫成省略括號及前面加號的形式。使學(xué)生在解決問題的過程中體會到“代數(shù)和“的含義。這里不要求出現(xiàn)“代數(shù)和”的名稱。
初中數(shù)學(xué)教學(xué)設(shè)計4
教學(xué)目標
1.了解的概念和的畫法,掌握的三要素;
2.會用上的點表示有理數(shù),會利用比較有理數(shù)的大;
3.使學(xué)生初步了解數(shù)形結(jié)合的思想方法,培養(yǎng)學(xué)生相互聯(lián)系的觀點。
教學(xué)建議
一、重點、難點分析
本節(jié)的重點是初步理解數(shù)形結(jié)合的思想方法,正確掌握畫法和用上的點表示有理數(shù),并會比較有理數(shù)的大小。難點是正確理解有理數(shù)與上點的對應(yīng)關(guān)系。的概念包含兩個內(nèi)容,一是的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應(yīng)該明確的是,所有的有理數(shù)都可用上的點表示,但上的點所表示的數(shù)并不都是有理數(shù)。通過學(xué)習(xí),使學(xué)生初步掌握用解決問題的方法,為今后充分利用這個工具打下基礎(chǔ)。
二、知識結(jié)構(gòu)
有了,數(shù)和形得到了初步結(jié)合,這有利于對數(shù)學(xué)問題的研究,數(shù)形結(jié)合是理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的重要思想方法,本課知識要點如下表:
定義
三要素
應(yīng)用
數(shù)形結(jié)合
規(guī)定了原點、正方向、單位長度的直線叫
原 點
正方向
單位長度
幫助理解有理數(shù)的概念,每個有理數(shù)都可用上的點表示,但上的點并非都是有理數(shù)
比較有理數(shù)大小,上右邊的數(shù)總比左邊的數(shù)要大
在理解并掌握概念的基礎(chǔ)之上,要會畫出,能將已知數(shù)在上表示出來,能說出上已知點所表示的數(shù),要知道所有的有理數(shù)都可以用上的點表示,會利用比較有理數(shù)的大小。
三、教法建議
小學(xué)里曾學(xué)過利用射線上的點來表示數(shù),為此我們可引導(dǎo)學(xué)生思考:把射線怎樣做些改進就可以用來表示有理數(shù)?伴以溫度計為模型,引出的概念。是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是的根本依據(jù)。與它所在的位置無關(guān),但為了教學(xué)上需要,一般水平放置的,規(guī)定從原點向右為正方向。要注意原點位置選擇的任意性。
關(guān)于有理數(shù)與上的點的對應(yīng)關(guān)系,應(yīng)該明確的是有理數(shù)可以用上的點表示,但上的點與有理數(shù)并不存在一一對應(yīng)的關(guān)系。根據(jù)幾個有理數(shù)在上所對應(yīng)的點的相互位置關(guān)系,應(yīng)該能夠判斷它們之間的大小關(guān)系。通過點與有理數(shù)的對應(yīng)關(guān)系及其應(yīng)用,逐步滲透數(shù)形結(jié)合的思想。
四、的相關(guān)知識點
1.的概念
。1)規(guī)定了原點、正方向和單位長度的直線叫做。
這里包含兩個內(nèi)容:一是的三要素:原點、正方向、單位長度缺一不可。二是這三個要素都是規(guī)定的。
。2)能形象地表示數(shù),所有的有理數(shù)都可用上的點表示,但上的點所表示的數(shù)并不都是有理數(shù)。
以是理解有理數(shù)概念與運算的重要工具。有了,數(shù)和形得到初步結(jié)合,數(shù)與表示數(shù)的圖形(如)相結(jié)合的思想是學(xué)習(xí)數(shù)學(xué)的重要思想。另外,能直觀地解釋相反數(shù),幫助理解絕對值的意義,還可以比較有理數(shù)的大小。因此,應(yīng)重視對的學(xué)習(xí)。
2.的畫法
。1)畫直線(一般畫成水平的)、定原點,標出原點“O”。
(2)取原點向右方向為正方向,并標出箭頭。
。3)選適當(dāng)?shù)拈L度作為單位長度,并標出…,-3,-2,-1,1,2,3…各點。具體如下圖。
。4)標注數(shù)字時,負數(shù)的.次序不能寫錯,如下圖。
3.用比較有理數(shù)的大小
。1)在上表示的兩數(shù),右邊的數(shù)總比左邊的數(shù)大。
。2)由正、負數(shù)在上的位置可知:正數(shù)都有大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù)。
。3)比較大小時,用不等號順次連接三個數(shù)要防止出現(xiàn)“ ”的寫法,正確應(yīng)寫成“ ”。
五、定義的理解
1.規(guī)定了原點、正方向和單位長度的直線叫做,如圖1所示。
2.所有的有理數(shù),都可以用上的點表示。例如:在上畫出表示下列各數(shù)的點(如圖2).
A點表示-4; B點表示-1.5;
O點表示0; C點表示3.5;
D點表示6.
從上面的例子不難看出,在上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大,又從正數(shù)和負數(shù)在上的位置,可以知道:
正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù)。
因為正數(shù)都大于0,反過來,大于0的數(shù)都是正數(shù),所以,我們可以用 ,表示 是正數(shù);反之,知道 是正數(shù)也可以表示為 。
同理, ,表示 是負數(shù);反之 是負數(shù)也可以表示為 。
3.正常見幾種錯誤
1)沒有方向
2)沒有原點
3)單位長度不統(tǒng)一
教學(xué)設(shè)計示例
初中數(shù)學(xué)教學(xué)設(shè)計5
一、背景
新課標要求,應(yīng)讓學(xué)生在實際背景中理解基本的數(shù)量關(guān)系和變化規(guī)律,注重使學(xué)生經(jīng)歷從實際問題中建立數(shù)學(xué)模型、估計、求解、驗證解的正確性與合理性的過程。在實際工作中讓學(xué)生學(xué)會從具體問題情景中抽象出數(shù)學(xué)問題,使用各種數(shù)學(xué)語言表達問題、建立數(shù)學(xué)關(guān)系式、獲得合理的解答、理解并掌握相應(yīng)的數(shù)學(xué)知識與技能,這些多數(shù)教師都注意到了,但要做好,還有一定難度。
二、教學(xué)片段
在剛過去的這個學(xué)期,我上了一節(jié)“一元一次不等式組的應(yīng)用”。
出示例題:小寶和爸爸、媽媽三人在操場上玩蹺蹺板,爸爸體重為72千克,坐在蹺蹺板的一端,體重只有媽媽一半的小寶和媽媽一同坐在另一端。這時,爸爸的一端仍然著地,后來小寶借來一副質(zhì)量為6千克的啞鈴,加在他和媽媽坐的一端,結(jié)果,爸爸被高高地蹺起。猜猜看,小寶的體重約多少千克?
我問學(xué)生:“你們玩過蹺蹺板嗎?先看看題,一會請同學(xué)復(fù)述一下!睂W(xué)生復(fù)述后,基本已經(jīng)熟悉了題目。我接著讓學(xué)生思考:他們?nèi)俗藥状诬E蹺板?第一次坐時情況怎樣?第二次呢?學(xué)生議論了一會兒,自主發(fā)言,很快發(fā)現(xiàn)本題中存在的兩種文字形式的不等關(guān)系:
爸爸體重>小寶體重+媽媽體重
爸爸體重<小寶體重+媽媽體重+一副啞鈴重量
我引導(dǎo):你還能怎么判斷小寶體重?學(xué)生安靜了幾分鐘后,開始議論。一學(xué)生舉手了:“可以列不等式組!蔽医o出提示:“小寶的體重應(yīng)該同時滿足上述的兩個條件。怎么把這個意思表達成數(shù)學(xué)式子呢?”這時學(xué)生們七嘴八舌地討論起來,都搶著回答,
我注意到一位平時不愛說話的學(xué)生緊鎖眉頭,便讓他發(fā)言:“可以設(shè)小寶的體重為x千克,能列出兩個不等式。可是接下來我就不知道了。”我聽了心中一動,意識到這應(yīng)是思想滲透的好機會,便解釋說:“我們在初中會遇到許多問題都可以用類似的方法來研究解決,比方說前面列方程組”不等我說完,學(xué)生都齊聲答:“列不等式組!比12小組積極投入到解題活動中了。5分鐘后,我請學(xué)生板演,自己下去巡查、指導(dǎo),發(fā)現(xiàn)學(xué)生的解題思路都很清楚,只是部分學(xué)生對答案的表達不夠準確。于是提議學(xué)生說說列不等式組解應(yīng)用題分幾步,應(yīng)注意什么。此時學(xué)生也基本上形成了對不等式方法的`完整認識。我便出示拓展應(yīng)用課件:
一次考試共25道選擇題,做對一道得4分,做錯一道減2分,不做得0分。若小明想確保考試成績在60分以上,那么他至少要做對多少題?
設(shè)置這道題,既有調(diào)查本節(jié)課效果的意圖,也想鞏固拓展一下學(xué)生的思維。沒料到相當(dāng)多學(xué)生對“至少”一詞理解不準確,導(dǎo)致失誤。這正好讓我們的“本課小結(jié)”填補了一個空白——弄清題目中描述數(shù)量關(guān)系的關(guān)鍵詞才是解題的關(guān)鍵。
三、反思
本節(jié)課講完后,我感到一絲欣慰,看到孩子們躍躍欲試的學(xué)習(xí)勁頭,突然領(lǐng)悟到:教師的教學(xué)行為至關(guān)重要,成功的教學(xué),能開啟學(xué)生心靈的窗戶,能幫學(xué)生樹立學(xué)習(xí)的自信心。
本節(jié)課我有幾個深刻的感受:
1、在課前準備的時候,我就覺得不等式組的應(yīng)用是個難點。所以在課堂教學(xué)中設(shè)置了幾個臺階,這也正好符合了循序漸進的教學(xué)原則。
2、例題貼近學(xué)生實際,我在教學(xué)中有采用了更親近的教學(xué)語言,有利于激發(fā)學(xué)生的探究欲望。
3、關(guān)注學(xué)生的學(xué)習(xí)狀態(tài),隨時采取靈活適宜的教學(xué)方法,師生互動,生生互動,課堂教學(xué)才更加有效。
4、學(xué)生在學(xué)習(xí)后,確實感受到“不等式的方法”就像方程的方法一樣是從字母表示數(shù)開始研究解決的。這種方法可以幫助我們用數(shù)學(xué)的方式解決實際問題。
初中數(shù)學(xué)教學(xué)設(shè)計6
摘 要:本著對課堂練習(xí)分層教學(xué)設(shè)計的要求與目的,本節(jié)課設(shè)計了三個層次。針對學(xué)困生的特殊情況,課堂練習(xí)通過誦讀定理和抄寫例題來使其加深印象;在鞏固練習(xí)中中等生要求書面寫出步驟并進行展示;對于優(yōu)等生在快結(jié)束本節(jié)課時拋出變式讓他們進行思考,并交流思路。這三個層次都貫穿于整個課堂教學(xué),使每位學(xué)生上課都有事可做,根據(jù)自己的能力來解決能力范圍內(nèi)的問題。
關(guān)鍵詞:相切;環(huán)節(jié)說明;分層體現(xiàn);
一、案例背景介紹
。ㄒ唬┙虒W(xué)環(huán)境
在我們著手進行課題《初中數(shù)學(xué)分層教學(xué)方式與策略研究》的研究開始后,大家齊心協(xié)力探索、研究方法,組內(nèi)各種分層招數(shù)可謂是百花齊放,為此我代表課題組上了一節(jié)分層教學(xué)的展示課,以供同仁觀摩點評,為促進數(shù)學(xué)教學(xué)的分層設(shè)計向更好的方向前行作貢獻。
(二)學(xué)生情況
我校學(xué)生大部分來自韓莊鎮(zhèn)不同的自然村,由于小學(xué)地域的不同,所以學(xué)生的基礎(chǔ)各不相同,很多學(xué)生的基礎(chǔ)還相當(dāng)薄弱。因此這種情況特別適合分層教學(xué)。
。ㄈ┙滩那闆r
本課是人教版初三數(shù)學(xué)上冊第24章圓第2節(jié)點和圓、直線和圓的位置關(guān)系中的一個課時:直線和圓相切的情況。學(xué)生已經(jīng)有了點和圓的位置關(guān)系的基礎(chǔ)以及直線和圓的位置關(guān)系的數(shù)量的認識,本節(jié)課研究直線與圓的特殊位置關(guān)系相切,將相切從位置到數(shù)量的邏輯自然過渡,進而引出圓的切線的判定和性質(zhì)。重點是圓的`切線的判定定理和性質(zhì)定理。難點是判定定理的理解和性質(zhì)定理證明中反證法的理解。
二、案例內(nèi)容設(shè)計及說明
環(huán)節(jié)一:復(fù)習(xí)引入
通過回顧舊知再次加深圓與直線的位置關(guān)系,在全班集體朗讀中體會d與r的關(guān)系,并順勢將位置關(guān)系量化這一問題顯化,同時自然引出特殊情況――相切
環(huán)節(jié)說明:俗話說書讀百遍,其意自現(xiàn)。數(shù)學(xué)概念在朗讀中更能逐漸理解其本質(zhì),因此不光語文需要朗讀,數(shù)學(xué)也要朗讀。而且針對我班學(xué)困生上課聽不懂,不會做的現(xiàn)象,這樣來設(shè)計復(fù)習(xí)方式更能調(diào)動我班學(xué)生學(xué)習(xí)的動力,讓每位學(xué)生都參與到課堂教學(xué)中來。這也是這個環(huán)節(jié)分層的體現(xiàn)。
環(huán)節(jié)二:新知探究
活動
1、引導(dǎo)學(xué)生從直線與圓相切的位置及數(shù)量關(guān)系上來深入探究,通過動態(tài)演示來理解一條直線何時變成圓的切線。
環(huán)節(jié)說明:上節(jié)課得到的圓與直線相切是數(shù)量上的關(guān)系,通過動態(tài)的演示讓學(xué)生明確位置的變化,從而總結(jié)出切線的判定。但是引導(dǎo)很重要,從兩個方面去觀察:直線經(jīng)過哪里?與圓的半徑有什么位置關(guān)系?需要老師點撥。并要等待學(xué)生來總結(jié),不能操之過急。分層體現(xiàn)1對觀察的結(jié)果分別讓兩位程度較差的學(xué)生回答,再讓中等程度的學(xué)生來總結(jié);體現(xiàn)2對定理的數(shù)學(xué)表達讓全體學(xué)生寫在練習(xí)本上,老師選擇展示,并修改;體現(xiàn)3對總結(jié)出的判定進行朗讀。
活動
2、將判定的題設(shè)和結(jié)論互換后的探究。
環(huán)節(jié)說明:反證法在過三點做圓時已有所涉及,所以在這里用反證法證明切線的性質(zhì)時讓學(xué)生互相交流討論然后進行匯報就行,不要進行過多的引申,否則淡化了主題。分層體現(xiàn)1討論交流時采取師傅和徒弟在同一組,師傅負責(zé)解釋證明的方法;體現(xiàn)2數(shù)學(xué)語言的書寫讓學(xué)生自己寫并派代表寫在黑板上。
環(huán)節(jié)三:鞏固和應(yīng)用
通過判斷題加深對切線的判定和性質(zhì)的理解。通過師生共同分析解決幾何解答證明題,并由學(xué)生書寫證明步驟。
環(huán)節(jié)說明:判斷題中設(shè)置了3道小題,并給出了反例,能使學(xué)生更加明確定理的意義。這里教學(xué)的分層體現(xiàn)在針對反例來問學(xué)困生為什么不對,讓學(xué)生說出違背了所需條件的哪一條,強化切線判定條件在這部分學(xué)生頭腦中的印象。例題的分析采取了小組討論交流的方法,與環(huán)節(jié)二中的分組一樣,分層體現(xiàn)在“師帶徒”弄清解題思路,師傅增強了解題的邏輯性,更嚴密,徒弟學(xué)會了解題的分析,拓寬了視野,打開了思路。在有思路的前提下,全班安靜書寫步驟。還可以展示在投影下,由學(xué)生來評判書寫的是否清楚。
環(huán)節(jié)四:課堂小結(jié)
在小結(jié)中,除了總結(jié)出本節(jié)課所學(xué)的判定和性質(zhì)外,將相關(guān)的判定和性質(zhì)做一歸納很有必要,“在不斷的總結(jié)中收獲、進步”不是嗎?同時提出下節(jié)課要學(xué)習(xí)的相關(guān)性質(zhì)更能激起學(xué)生學(xué)習(xí)的積極性。
環(huán)節(jié)說明:在小結(jié)的分層中判定由程度稍差點的學(xué)生總結(jié),哪怕照著書上找都行,并進行誦讀,使其再次熟知所學(xué)知識。在性質(zhì)的總結(jié)中,老師拋出兩條本節(jié)未涉及的性質(zhì)給學(xué)生,讓學(xué)生課后思考證明,在下節(jié)課時可由學(xué)生簡要發(fā)表見解并證明。
環(huán)節(jié)五:拓展練習(xí)
通過引導(dǎo)學(xué)生添加輔助線,點撥學(xué)生圓中常用輔助線的做法,分情況添加恰當(dāng)?shù)妮o助線。這兩個練習(xí)旨在拓展尖子生的思維。
環(huán)節(jié)六:作業(yè)布置
通過分層布置,使每位學(xué)生都能在自己能力范圍內(nèi)進行鞏固練習(xí)。
環(huán)節(jié)說明:作業(yè)
1、重點面向?qū)W困生考察其掌握基礎(chǔ)的程度。作業(yè)
2、針對待優(yōu)生夯實基礎(chǔ)的基礎(chǔ)上,提高其運用能力。作業(yè)
3、是設(shè)計的培優(yōu)計劃,對學(xué)有余力的學(xué)生來說是個很好的鍛煉機會。
三、案例分析與反思
實際上本節(jié)課中圓的切線的判定定理是為了便于應(yīng)用而對直線和圓相切的定義改寫得到的一種形式,而圓的切線的性質(zhì)定理的證明僅僅要求學(xué)生再次感受反證法,并不要求會應(yīng)用,所以本節(jié)的設(shè)計在分層中很注重理解和感知,通過互幫互助和朗讀感知達到難點的突破,另外圓是學(xué)生學(xué)習(xí)的第一個曲線形,由直線形到曲線形,在知識上是一個飛躍,本節(jié)利用圖形運動變化過程發(fā)現(xiàn)其中圖形的性質(zhì),做好了知識前后的銜接,同時加強了新舊知識的聯(lián)系,發(fā)揮出了知識的遷移作用。類比也是本節(jié)課所用到的一個重要的學(xué)習(xí)方法,而且在教授過程中難度的控制非常適當(dāng),分層的影子處處可見。縱觀整節(jié)課的分層之處進入都很自然,也落到了實處,但分層效果的檢測沒有體現(xiàn)出來,這也是遺憾之處。
初中數(shù)學(xué)教學(xué)設(shè)計7
一、學(xué)情分析
八年級學(xué)生具有強烈的好勝心和求知欲,抽象思維趨于成熟,形象直觀思維能力較強,具有一定的獨立思考、實踐操作、合作交流、歸納概括等能力,能進行簡單的推理
二、教材分析
這節(jié)課是人教版八年級第十八章第一節(jié)的內(nèi)容,教學(xué)內(nèi)容是勾股定理公式的推導(dǎo)、證明及其簡單的應(yīng)用。本節(jié)課是在學(xué)生已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,勾股定理是幾何中最重要的定理之一,它揭示的是直角三角形中三條邊之間的數(shù)量關(guān)系,將數(shù)與形密切聯(lián)系起來,為以后學(xué)習(xí)四邊形、圓、解直角三角形等數(shù)學(xué)知識奠定了基礎(chǔ)。它有著豐富的歷史背景,在數(shù)學(xué)的發(fā)展中起著重要的作用,在現(xiàn)實生活中也有著廣泛的應(yīng)用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。
三、教學(xué)目標設(shè)計
知識與技能
探索勾股定理的內(nèi)容并證明,能夠運用勾股定理進行簡單計算和運用
過程與方法
。1)通過觀察分析,大膽猜想,探索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、邏輯推理的能力。
(2)在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學(xué)過程,并體會數(shù)形結(jié)合和從特殊到一般的思想方法。
情感態(tài)度與價值
。1)在探索勾股定理的過程中,培養(yǎng)學(xué)生的合作交流意識和探索精神,增進數(shù)學(xué)學(xué)習(xí)的信心,感受數(shù)學(xué)之美,探究之趣。
。2)利用遠程教育資源介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學(xué)生的民族自豪感和鉆研精神。
四、教學(xué)重點難點
教學(xué)重點
探索和證明勾股定理 ·教學(xué)難點
用拼圖的方法證明勾股定理
五、教學(xué)方法
。▽W(xué)法)“引導(dǎo)探索法”
。ㄗ灾魈骄,合作學(xué)習(xí),采用小組合作的方法。
六、教具準備
課件、三角板
七、教學(xué)過程設(shè)計
教學(xué)環(huán)節(jié)1
教學(xué)過程:創(chuàng)設(shè)情境探索新知 教師活動:出示第24屆國際數(shù)學(xué)家大會的會徽的圖案向?qū)W生提問
(1) 你見過這個圖案嗎?
。2) 你聽說過“勾股定理”嗎?
學(xué)生活動:學(xué)生思考回答
設(shè)計意圖:目的在于從現(xiàn)實生活中提出“趙爽弦圖”,進一步激發(fā)學(xué)生積極主動地投入到探索活動中,同時為探索勾股定理提供背景材料。
教學(xué)環(huán)節(jié)2 教學(xué)過程:實驗操作獲取新知歸納驗證完善新知
教師活動:出示課件,引導(dǎo)學(xué)生探索
學(xué)生活動:猜想實驗合作交流畫圖測量拼圖驗證
設(shè)計意圖:滲透從特殊到一般的數(shù)學(xué)思想。為學(xué)生提供參與數(shù)學(xué)活動的時間和空間,發(fā)揮學(xué)生的'主體作用;讓學(xué)生自己動手拼出趙爽弦圖,培養(yǎng)他們學(xué)習(xí)數(shù)學(xué)的成就感。通過拼圖活動,使學(xué)生對定理的理解更加深刻,體會數(shù)學(xué)中的數(shù)形結(jié)合思想,調(diào)動學(xué)生思維的積極性,激發(fā)學(xué)生探求新知的欲望。給學(xué)生充分的時間與空間討論、交流,鼓勵學(xué)生敢于發(fā)表自己的見解,感受合作的重要性。
教學(xué)環(huán)節(jié)3 教學(xué)過程:解決問題應(yīng)用新知
教師活動:出示例題和練習(xí)
學(xué)生活動:交流合作,解決問題
設(shè)計意圖:通過運用勾股定理對實際問題的解釋和應(yīng)用,培養(yǎng)學(xué)生從身邊的事物中抽象出幾何模型的能力,使學(xué)生更加深刻地認識數(shù)學(xué)的本質(zhì):數(shù)學(xué)來源于生活,并能服務(wù)于生活,順利解決如何將實際問題轉(zhuǎn)化為求直角三角形邊長的問題,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。
教學(xué)環(huán)節(jié)4 教學(xué)內(nèi)容:課堂小結(jié)鞏固新知布置作業(yè)
教師活動:引導(dǎo)學(xué)生小結(jié)
學(xué)生活動:討論交流、自由發(fā)言
設(shè)計意圖:既引導(dǎo)學(xué)生從面積的角度理解勾股定理,又從能力、情感、態(tài)度等方面關(guān)注學(xué)生對課堂整體感受,在輕松愉快的氣氛中體會收獲的喜悅。
通過布置課外作業(yè),給學(xué)生留有繼續(xù)學(xué)習(xí)的空間和興趣,及時獲知學(xué)生對本節(jié)課知識的掌握情況,適當(dāng)?shù)恼{(diào)整教學(xué)進度和教學(xué)方法,并對學(xué)習(xí)有困難的學(xué)生給與指導(dǎo)。
八、板書設(shè)計
勾股定理:如果直角三角形的兩直角邊分別為a和b,斜邊為c,那么 a2+b2=c2。
九、習(xí)題拓展
如圖,將長為10米的梯子AC斜靠在墻上,BC長為6米。
。1)求梯子上端A到墻的底端B的距離AB。
。2)若梯子下部C向后移動2米到C1點,那么梯子上部A向下移動了多少米?
十、作業(yè)設(shè)計
1。收集有關(guān)勾股定理的證明方法, 下節(jié)課展示、交流。
2。做一棵奇妙的勾股樹(選做)
初中數(shù)學(xué)教學(xué)設(shè)計8
一、學(xué)情分析
八年級學(xué)生具有強烈的好勝心和求知欲,抽象思維趨于成熟,形象直觀思維能力較強,具有一定的獨立思考、實踐操作、合作交流、歸納概括等能力,能進行簡單的推理
二、教材分析
這節(jié)課是人教版八年級第十八章第一節(jié)的內(nèi)容,教學(xué)內(nèi)容是勾股定理公式的推導(dǎo)、證明及其簡單的應(yīng)用。本節(jié)課是在學(xué)生已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,勾股定理是幾何中最重要的定理之一,它揭示的是直角三角形中三條邊之間的數(shù)量關(guān)系,將數(shù)與形密切聯(lián)系起來,為以后學(xué)習(xí)四邊形、圓、解直角三角形等數(shù)學(xué)知識奠定了基礎(chǔ)。它有著豐富的歷史背景,在數(shù)學(xué)的發(fā)展中起著重要的作用,在現(xiàn)實生活中也有著廣泛的應(yīng)用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。
三、教學(xué)目標設(shè)計
知識與技能
探索勾股定理的內(nèi)容并證明,能夠運用勾股定理進行簡單計算和運用
過程與方法
。1)通過觀察分析,大膽猜想,探索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、邏輯推理的能力。
。2)在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學(xué)過程,并體會數(shù)形結(jié)合和從特殊到一般的思想方法情感態(tài)度與價值
。1)在探索勾股定理的過程中,培養(yǎng)學(xué)生的合作交流意識和探索精神,增進數(shù)學(xué)學(xué)習(xí)的信心,感受數(shù)學(xué)之美,探究之趣。
。2)利用遠程教育資源介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學(xué)生的民族自豪感和鉆研精神。
四、教學(xué)重點難點
教學(xué)重點
探索和證明勾股定理
教學(xué)難點
用拼圖的方法證明勾股定理
五、教學(xué)方法
(學(xué)法)“引導(dǎo)探索法”
。ㄗ灾魈骄浚献鲗W(xué)習(xí),采用小組合作的方法。
六、教具準備
課件、三角板
七、教學(xué)過程設(shè)計
教學(xué)環(huán)節(jié)1
教學(xué)過程:創(chuàng)設(shè)情境探索新知
教師活動:出示第24屆國際數(shù)學(xué)家大會的會徽的`圖案向?qū)W生提問
(1)你見過這個圖案嗎?
(2)你聽說過“勾股定理”嗎?
學(xué)生活動:
學(xué)生思考回答
設(shè)計意圖:目的在于從現(xiàn)實生活中提出“趙爽弦圖”,進一步激發(fā)學(xué)生積極主動地投入到探索活動中,同時為探索勾股定理提供背景材料。
教學(xué)環(huán)節(jié)
教學(xué)過程:
實驗操作獲取新知歸納驗證完善新知
教師活動:出示課件,引導(dǎo)學(xué)生探索
學(xué)生活動:猜想實驗合作交流畫圖測量拼圖驗證
設(shè)計意圖:滲透從特殊到一般的數(shù)學(xué)思想.為學(xué)生提供參與數(shù)學(xué)活動的時間和空間,發(fā)揮學(xué)生的主體作用;讓學(xué)生自己動手拼出趙爽弦圖,培養(yǎng)他們學(xué)習(xí)數(shù)學(xué)的成就感。通過拼圖活動,使學(xué)生對定理的理解更加深刻,體會數(shù)學(xué)中的數(shù)形結(jié)合思想,調(diào)動學(xué)生思維的積極性,激發(fā)學(xué)生探求新知的欲望.給學(xué)生充分的時間與空間討論、交流,鼓勵學(xué)生敢于發(fā)表自己的見解,感受合作的重要性。教學(xué)環(huán)節(jié)3教學(xué)過程:解決問題應(yīng)用新知
教師活動:出示例題和練習(xí)
學(xué)生活動:交流合作,解決問題
設(shè)計意圖:通過運用勾股定理對實際問題的解釋和應(yīng)用,培養(yǎng)學(xué)生從身邊的事物中抽象出幾何模型的能力,使學(xué)生更加深刻地認識數(shù)學(xué)的本質(zhì):數(shù)學(xué)來源于生活,并能服務(wù)于生活,順利解決如何將實際問題轉(zhuǎn)化為求直角三角形邊長的問題,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識.
教學(xué)環(huán)節(jié)4
教學(xué)內(nèi)容:
課堂小結(jié)
鞏固新知布置作業(yè)
教師活動:引導(dǎo)學(xué)生小結(jié)
學(xué)生活動:討論交流、自由發(fā)言
設(shè)計意圖:既引導(dǎo)學(xué)生從面積的角度理解勾股定理,又從能力、情感、態(tài)度等方面關(guān)注學(xué)生對課堂整體感受,在輕松愉快的氣氛中體會收獲的喜悅.
通過布置課外作業(yè),給學(xué)生留有繼續(xù)學(xué)習(xí)的空間和興趣,及時獲知學(xué)生對本節(jié)課知識的掌握情況,適當(dāng)?shù)恼{(diào)整教學(xué)進度和教學(xué)方法,并對學(xué)習(xí)有困難的學(xué)生給與指導(dǎo).
八、板書設(shè)計
勾股定理:如果直角三角形的兩直角邊分別為a和b,斜邊為c,那么a2+b2=c2。
九、習(xí)題拓展
如圖,將長為10米的梯子AC斜靠在墻上,BC長為6米。(1)求梯子上端A到墻的底端B的距離AB。
。2)若梯子下部C向后移動2米到C1點,那么梯子上部A向下移動了多少米?
十、作業(yè)設(shè)計
1、收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.
2、做一棵奇妙的勾股樹(選做)
初中數(shù)學(xué)教學(xué)設(shè)計9
一、內(nèi)容和內(nèi)容解析
。ㄒ唬﹥(nèi)容
概念:不等式、不等式的解、不等式的解集、解不等式以及能在數(shù)軸上表示簡單不等式的解集.
。ǘ﹥(nèi)容解析
現(xiàn)實生活中存在大量的相等關(guān)系,也存在大量的不等關(guān)系.本節(jié)課從生活實際出發(fā)導(dǎo)入常見行程問題的不等關(guān)系,使學(xué)生充分認識到學(xué)習(xí)不等式的重要性和必然性,激發(fā)他們的求知欲望.再通過對實例的進一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個概念.前面學(xué)過方程、方程的解、解方程的概念.通過類比教學(xué)、不等式、不等式的解、解不等式幾個概念不難理解.但是對于初學(xué)者而言,不等式的解集的理解就有一定的難度.因此教材又進行數(shù)形結(jié)合,用數(shù)軸來表示不等式的解集,這樣直觀形象的表示不等式的解集,對理解不等式的解集有很大的幫助.基于以上分析,可以確定本節(jié)課的教學(xué)重點是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數(shù)軸上.
二、目標和目標解析
(一)教學(xué)目標
1.理解不等式的概念
2.理解不等式的解與解集的意義,理解它們的區(qū)別與聯(lián)系3.了解解不等式的概念
4.用數(shù)軸來表示簡單不等式的解集
(二)目標解析
1.達成目標1的標志是:能正確區(qū)別不等式、等式以及代數(shù)式.
2.達成目標2的標志是:能理解不等式的解是解集中的某一個元素,而解集是所有解組成的一個集合.
3.達成目標3的標志是:理解解不等式是求不等式解集的一個過程.
4、達成目標4的標志是:用數(shù)軸表示不等式的解集是數(shù)形結(jié)合的又一個重要體現(xiàn),也是學(xué)習(xí)不等式的一種重要工具.操作時,要掌握好“兩定”:一是定界點,一般在數(shù)軸上只標出原點和界點即可,邊界點含于解集中用實心圓點,或者用空心圓點;二是定方向,小于向左,大于向右.
三、教學(xué)問題診斷分析
本節(jié)課實質(zhì)是一節(jié)概念課,對于不等式、不等式的解以及解不等式可通過類比方程、方程的解、解方程類比教學(xué),學(xué)生不難理解,但是對不等式的解集的理解就有一定的難度.
因此,本節(jié)課的教學(xué)難點是:理解不等式解集的意義以及在數(shù)軸上正確表示不等式的解集.
四、教學(xué)支持條件分析
利用多媒體直觀演示課前引入問題,激發(fā)學(xué)生的學(xué)習(xí)興趣.
五、教學(xué)過程設(shè)計
。ㄒ唬﹦赢嬔菔厩榫凹とざ嗝襟w演示:兩個體重相同的孩子正在蹺蹺板上做游戲,現(xiàn)在換了一個大人上去,蹺蹺板發(fā)生了傾斜,游戲無法繼續(xù)進行下去了,這是什么原因呢?設(shè)計意圖:通過實例創(chuàng)設(shè)情境,從“等”過渡到“不等”,培養(yǎng)學(xué)生的觀察能力,分析能力,激發(fā)他們的學(xué)習(xí)興趣.
。ǘ┝⒆銓嶋H引出新知
問題一輛勻速行駛的汽車在11︰20距離a地50km,要在12︰00之前駛過a地,車速應(yīng)滿足什么條件?
小組討論,合作交流,然后小組反饋交流結(jié)果.最后,老師將小組反饋意見進行整理(學(xué)生沒有討論出來的思路老師進行補充)
1.從時間方面慮:2.從行程方面:<>50 3.從速度方面考慮:x>50÷
設(shè)計意圖:培養(yǎng)學(xué)生合作、交流的意識習(xí)慣,使他們積極參與問題的討論,并敢于發(fā)表自己的見解.老師對問題解決方法的梳理與補充,發(fā)散學(xué)生思維,培養(yǎng)學(xué)生分析問題、解決問題的能力.
。ㄈ┚o扣問題概念辨析
1.不等式
設(shè)問1:什么是不等式?
設(shè)問2:能否舉例說明?由學(xué)生自學(xué),老師可作適當(dāng)補充.比如:是不等式.
2.不等式的解
設(shè)問1:什么是不等式的解?設(shè)問2:不等式的'解是唯一的嗎?由學(xué)生自學(xué)再討論.
老師點撥:由x>50÷得x>75說明x任意取一個大于75的數(shù)都是不等式
3.不等式的解集
設(shè)問1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都設(shè)問2:不等式的解集與不等式的解有什么區(qū)別與聯(lián)系?由學(xué)生自學(xué)后再小組合作交流.
老師點撥:不等式的解是不等式解集中的一個元素,而不等式的解集是不等式所有解組成的一個集合.
4.解不等式
設(shè)問1:什么是解不等式?由學(xué)生回答.
老師強調(diào):解不等式是一個過程.
設(shè)計意圖:培養(yǎng)學(xué)生的自學(xué)能力,進一步培養(yǎng)學(xué)生合作交流的意識.遵循學(xué)生的認知規(guī)律,有意識、有計劃、有條理地設(shè)計一些問題,可以讓學(xué)生始終處于積極的思維狀態(tài),不知不覺中接受了新知識.老師再適當(dāng)點撥,加深理解.
。ㄋ模⿺(shù)形結(jié)合,深化認識
問題1:由上可知,x>75既是不等式的解集.那么在數(shù)軸上如何表示x>75呢?問題2:如果在數(shù)軸上表示x≤ 75,又如何表示呢?由老師講解,注意規(guī)范性,準確性.老師適當(dāng)補充:“≥”與“≤”的意義,并強調(diào)用“≥”或“≤”連接的式子也是不等式.比如x≤ 75就是不等式.
設(shè)計意圖:通過數(shù)軸的直觀讓學(xué)生對不等式的解集進一步加深理解,滲透數(shù)形結(jié)合思想.
(五)歸納小結(jié),反思提高教師與學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請學(xué)生回答如下問題
1、什么是不等式?<的解集,也是不等式>50
2、什么是不等式的解?
3、什么是不等式的解集,它與不等式的解有什么區(qū)別與聯(lián)系?
4、用數(shù)軸表示不等式的解集要注意哪些方面?
設(shè)計意圖:歸納本節(jié)課的主要內(nèi)容,交流心得,不斷積累學(xué)習(xí)經(jīng)驗.
。┎贾米鳂I(yè),課外反饋
教科書第119頁第1題,第120頁第2,3題.
設(shè)計意圖:通過課后作業(yè),教師及時了解學(xué)生對本節(jié)課知識的掌握情況,以便對教學(xué)進度和方法進行適當(dāng)?shù)恼{(diào)整.
六、目標檢測設(shè)計
1.填空
下列式子中屬于不等式的有___________________________
①x +7>
、趚≥ y + 2 = 0
③ 5x + 7
設(shè)計意圖:讓學(xué)生正確區(qū)分不等式、等式與代數(shù)式,進一步鞏固不等式的概念.
2.用不等式表示
、 a與5的和小于7
、 a的與b的3倍的和是非負數(shù)
、壅叫蔚倪呴L為xcm,它的周長不超過160cm,求x滿足的條件設(shè)計意圖:培養(yǎng)學(xué)生審題能力,既要正確抓住題目中的關(guān)鍵詞,如“大于(小于)、非負數(shù)(正數(shù)或負數(shù))、不超過(不低于)”等等,正確選擇不等號,又要注意實際問題中的數(shù)量的實際意義.
初中數(shù)學(xué)教學(xué)設(shè)計10
為了提高學(xué)生的學(xué)習(xí)興趣,增大學(xué)生的學(xué)習(xí)參與面,減小差距。努力作好教學(xué)工作,在這一學(xué)期中,下文將準備了初中二年級下冊數(shù)學(xué)教學(xué)設(shè)計如下:
一、教學(xué)目標:
通過本期的學(xué)習(xí),要使學(xué)生在情感與態(tài)度上,認識到數(shù)學(xué)來源于實踐,又反作用于實踐,認識現(xiàn)實生活中圖形間的數(shù)量關(guān)系,能夠設(shè)計精美的圖案,提高學(xué)生的審美情趣,培養(yǎng)學(xué)生實事求是、嚴肅認真的學(xué)習(xí)態(tài)度,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生對數(shù)學(xué)的熱愛,對生活的熱愛,在民主、和諧、合作、探究、有序、分享發(fā)現(xiàn)快樂,感受學(xué)習(xí)的快樂。對于過程與方法,通過學(xué)生積極參與對知識的探究,經(jīng)歷發(fā)現(xiàn)知識,發(fā)現(xiàn)知識間的內(nèi)在聯(lián)系,讓學(xué)生經(jīng)歷發(fā)現(xiàn)知識道路上坎坎坷坷,達到深刻理解掌握知識的目的,達到漫江碧透,魚翔淺底的境界,在經(jīng)歷這些活動中,提高學(xué)生的動手實踐能力,提高學(xué)生的邏輯推理能力與邏輯思維能力,自主探究,解決問題的能力,提高運算能力,使所有學(xué)生在數(shù)學(xué)上都有不同的發(fā)展,盡可能接近其發(fā)展的最大值,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,發(fā)展學(xué)生的非智力因素,使學(xué)生潛移默化的接受辯證唯物主義的熏陶,提高學(xué)生素質(zhì)。
二、教材分析
本學(xué)期教學(xué)內(nèi)容共計五章,知識的前后聯(lián)系,教材的教學(xué)目標,重、難點分析如下:
第十六章 分式 本章的主要內(nèi)容包括:分式的概念,分式的基本性質(zhì),分式的約分與通分,分式的加、減、乘、除運算,整數(shù)指數(shù)冪的概念及運算性質(zhì),分式方程的概念及可化為一元一次方程的分式方程的解法。
第十七章 反比例函數(shù) 函數(shù)是研究現(xiàn)實世界變化規(guī)律的一個重要模型,本單元學(xué)生在學(xué)習(xí)了一次函數(shù)后,進一步研究反比例函數(shù)。學(xué)生在本章中經(jīng)歷:反比例函數(shù)概念的抽象概括過程,體會建立數(shù)學(xué)模型的思想,進一步發(fā)展學(xué)生的抽象思維能力;經(jīng)歷反比例函數(shù)的圖象及其性質(zhì)的探索過程,在交流中發(fā)展能力這是本章的重點之一;經(jīng)歷本章的重點之二:利用反比例函數(shù)及圖象解決實際問題的過程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力;經(jīng)歷函數(shù)圖象信息的識別應(yīng)用過程,發(fā)展學(xué)生形象思維;能根據(jù)所給信息確定反比例函數(shù)表達式,會作反比例函數(shù)圖象,并利用它們解決簡單的實際問題。本章的難點在于對學(xué)生抽象思維的培養(yǎng),以及提高數(shù)形結(jié)合的意識和能力。
第十八章 勾股定理 直角三角形是一種特殊的三角形,它有許多重要的性質(zhì),如兩個銳角互余,30度角所對的直角邊等于斜邊的一半,本章所研究的勾股定理,也是直角三角形的性質(zhì),而且是一條非常重要的性質(zhì),本章分為兩節(jié),第一節(jié)介紹勾股定理及其應(yīng)用,第二節(jié)介紹勾股定理的逆定理。
第十九章 四邊形 四邊形是人們?nèi)粘I钪袘?yīng)用較廣泛的一種圖形,尤其是平行四邊形、矩形、菱形、正方形、梯形等特殊四邊形的用處更多。因此,四邊形既是幾何中的基本圖形,也是空間與圖形領(lǐng)域研究的主要對象之一。本章是在學(xué)生前面學(xué)段已經(jīng)學(xué)過的四邊形知識、本學(xué)段學(xué)過的多邊形、平行線、三角形的有關(guān)知識的基礎(chǔ)上來學(xué)習(xí)的,也可以說是在已有知識的基礎(chǔ)上做進一步系統(tǒng)的整理和研究,本章內(nèi)容的學(xué)習(xí)也反復(fù)運用了平行線和三角形的知識。從這個角度來看,本章的內(nèi)容也是前面平行線和三角形等內(nèi)容的應(yīng)用和深化。
第二十章 數(shù)據(jù)的分析 本章主要研究平均數(shù)、中位數(shù)、眾數(shù)以及極差、方差等統(tǒng)計量的統(tǒng)計意義,學(xué)習(xí)如何利用這些統(tǒng)計量分析數(shù)據(jù)的集中趨勢和離散情況,并通過研究如何用樣本的平均數(shù)和方差估計總體的平均數(shù)和方差,進一步體會用樣本估計總體的'思想。
三、提高學(xué)科教育質(zhì)量的主要措施:
1、認真做好教學(xué)七認真工作。把教學(xué)七認真作為提高成績的主要方法,認真研讀新課程標準,鉆研新教材,根據(jù)新課程標準,擴充教材內(nèi)容,認真上課,批改作業(yè),認真輔導(dǎo),認真制作測試試卷,也讓學(xué)生學(xué)會認真學(xué)習(xí)。
2、興趣是最好的老師,愛因斯坦如是說。激發(fā)學(xué)生的興趣,給學(xué)生介紹數(shù)學(xué)家,數(shù)學(xué)史,介紹相應(yīng)的數(shù)學(xué)趣題,給出數(shù)學(xué)課外思考題,激發(fā)學(xué)生的興趣。
3、引導(dǎo)學(xué)生積極參與知識的構(gòu)建,營造民主、和諧、平等、自主、探究、合作、交流、分享發(fā)現(xiàn)快樂的高效的學(xué)習(xí)課堂,讓學(xué)生體會學(xué)習(xí)的快樂,享受學(xué)習(xí)。引導(dǎo)學(xué)生寫復(fù)習(xí)提綱,使知識來源于學(xué)生的構(gòu)造。
4、引導(dǎo)學(xué)生積極歸納解題規(guī)律,引導(dǎo)學(xué)生一題多解,多解歸一,培養(yǎng)學(xué)生透過現(xiàn)象看本質(zhì),提高學(xué)生舉一反三的能力,這是提高學(xué)生素質(zhì)的根本途徑之一,培養(yǎng)學(xué)生的發(fā)散思維,讓學(xué)生處于一種思如泉涌的狀態(tài)。
5、運用新課程標準的理念指導(dǎo)教學(xué),積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。
6、培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,陶行知說:教育就是培養(yǎng)習(xí)慣,有助于學(xué)生穩(wěn)步提高學(xué)習(xí)成績,發(fā)展學(xué)生的非智力因素,彌補智力上的不足。
7、指導(dǎo)成立課外興趣小組的民間組織,開展豐富多彩的課外活動,開展對奧數(shù)題的研究,課外調(diào)查,操作實踐,帶動班級學(xué)生學(xué)習(xí)數(shù)學(xué),同時發(fā)展這一部分學(xué)生的特長。
8、開展分層教學(xué),布置作業(yè)設(shè)置A、B、C三類分層布置分別適合于差、中、好三類學(xué)生,課堂上的提問要照顧好、中、差三類學(xué)生,使他們都等到發(fā)展。
9、進行個別輔導(dǎo),優(yōu)生提升能力,扎實打牢基礎(chǔ)知識,對差生,一些關(guān)鍵知識,輔導(dǎo)差生過關(guān),為差生以后的發(fā)展鋪平道路。
10、站在系統(tǒng)的高度,使知識構(gòu)筑在一個系統(tǒng),上升到哲學(xué)的高度,八方聯(lián)系,渾然一體,使學(xué)生學(xué)得輕松,記得牢固。
初中數(shù)學(xué)教學(xué)設(shè)計11
【教學(xué)目標】
使學(xué)生知道數(shù)軸上有原點、正方向和單位長度,能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上的已知點所表示的數(shù),知道有理數(shù)都可以用數(shù)軸上的點表示;向?qū)W生滲透對立統(tǒng)一的辯證唯物主義觀點及數(shù)形結(jié)合的數(shù)學(xué)思想!緝(nèi)容簡析】
本節(jié)課是數(shù)軸的第一課時,在學(xué)生學(xué)了有理數(shù)概念的基礎(chǔ)上,從標有刻度的溫度計來表示溫度高低這個事實出發(fā)引出數(shù)軸畫法和用數(shù)軸上點表示數(shù)的方法,可以使學(xué)生借助圖形的直觀來理解有理數(shù)的有關(guān)問題,突出知識的產(chǎn)生過程,也為以后學(xué)習(xí)實數(shù)奠定基礎(chǔ)。本節(jié)的重點是掌握數(shù)軸的概念和畫法,明確其三要素缺一不可。數(shù)軸上的點與有理數(shù)的對應(yīng)關(guān)系的理解是難點。教學(xué)中要求學(xué)生多動手,增強對“形”的感性認識,培養(yǎng)動手、動腦和實際操作能力!玖鞒淘O(shè)計】
一、情景創(chuàng)設(shè)
溫度計的用途是什么?類似于這種用帶有刻度的物體表示數(shù)的東西還有哪些(直尺、彈簧秤等)?
數(shù)學(xué)中,在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零。
二、新知探索
1.請學(xué)生閱讀新課思考:
、倭闵25℃用正數(shù)_____表示。0℃用數(shù)____表示;零下10℃用負數(shù)_____表示。②數(shù)軸要具備哪三個要素?
、墼c表示什么數(shù)?原點右方表示什么數(shù)?原點左方表示什么數(shù)? ④表示+2的點在什么位置?表示-3的`點在什么位置?
、菰c向右0.5個單位長度的a點表示什么數(shù)?原點向左11個單位長度的b點表示什么數(shù)?
2.?dāng)?shù)軸的畫法
師生共同總結(jié)數(shù)軸的畫法步驟:
第一步:畫一條直線(通常是水平的直線),在這條直線上任取一點o,叫做原點,用這點表示數(shù)0;(相當(dāng)于溫度計上的0℃。)
第二步:規(guī)定這條直線的一個方向為正方向(一般取從左到右的方向,用箭頭表示出來)。相反的方向就是負方向;(相當(dāng)于溫度計0℃以上為正,0℃以下為負。)
第三步:適當(dāng)?shù)剡x取一條線段的長度作為單位長度,也就是在0的右面取一點表示1,0與1之間的長就是單位長度。(相當(dāng)于溫度計上1℃占1小格的長度。)
在數(shù)軸上從原點向右,每隔一個單位長度取一點,這些點依次表示1,2,3,?,從原點向左,每隔一個單位長度取一點,它們依次表示–1,–2,–3,?。
3.?dāng)?shù)軸的定義:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。
原點、正方向和單位長度是數(shù)軸的三要素,原點位置的選定、正方向的取向、單位長度大小的確定,都是根據(jù)需要認為規(guī)定的。直線也不一定是水平的。
三、范例共做
例1:判斷下圖中所畫的數(shù)軸是否正確?如不正確,指出錯在哪里? 分析:原點、正方向、單位長度這數(shù)軸的三要素缺一不可。解答:都不正確,
(1)缺少單位長度;
(2)缺少正方向;
(3)缺少原點;
(4)單位長度不一致。
例2:把下面各小題的數(shù)分別表示在三條數(shù)軸上:
(1)2,-1,0,?32,+3.5(2)-5,0,+5,15,20;
(3)-1500,-500,0,500,1000。
分析:要在數(shù)軸上表示數(shù),首先要正確畫出數(shù)軸,標明原點、正方向(一般從左到右為正方向)和單位長度這三要素,然后再表示數(shù),第(1)題,數(shù)不大,單位長度取1cm代表1,第(2)、(3)題數(shù)軸較大,可取1cm分別代表5和500。數(shù)軸上原點的位置要根據(jù)需要來定,不一定要居中,如第(1)題的原點可居中,(2)的原點可偏左,(3)的原點可偏右,單位長度也應(yīng)根據(jù)需要來確定,但在同一條數(shù)軸上,單位長度不能變。表示某個數(shù)的點,在圖形上一定要用較大的“.”突出來,并且在數(shù)軸上寫出該點表示的數(shù)。這樣畫出的圖形較合理、美觀。
例3:借助數(shù)軸回答下列問題
(1)有沒有最小的正整數(shù)?有沒有最大的正整數(shù)?如果有,把它指出來;
(2)有沒有最小的負整數(shù)?有沒有最大的負整數(shù)?如果有,把它標出來。
解答:觀察數(shù)軸易知:
(1)有最小的正整數(shù),它是1,沒有最大的正整數(shù);
(2)沒有最小的負整數(shù),有最大的負整數(shù),它是-1. 例4:比較–3,0,2的大小。
分析一:先在數(shù)軸上分別找到表示–3、0、2的點,由“右邊的數(shù)總比左邊的數(shù)大”得到–3<0<2;
分析二:直接由“正數(shù)都大于0;負數(shù)都小于0;正數(shù)大于一切負數(shù)”的規(guī)律得出–3<0<2。
四、檢測反饋
1.判斷下圖中所畫的數(shù)軸是否正確?
2.下面數(shù)軸上的點a、b、c、d、e分別表示什么數(shù)?
3.將-
3、1.5、21、-
6、2.25、1、-
5、1各數(shù)用數(shù)軸上的點表示出來。224.畫一條數(shù)軸,并在上面標出下列的點。
±100
±200
±300 提示:1.圖(1)是數(shù)據(jù)標注錯誤;圖(2)的畫法是正確的,在以后的學(xué)習(xí)中會遇到。
五、小結(jié)提高
1.?dāng)?shù)軸是非常重要的數(shù)學(xué)工具,它使數(shù)和直線上的點建立了對應(yīng)關(guān)系,它揭示了數(shù)與形之間的內(nèi)在聯(lián)系;所有的有理數(shù)都可以用數(shù)軸上的點表示,但反過來并不是數(shù)軸上的所有點都表示有理數(shù);
2.畫數(shù)軸時,原點的位置以及單位長度的大小可根據(jù)實際情況適當(dāng)選取,注意不要漏畫正方向、不要漏畫原點,單位長度一定要統(tǒng)一,數(shù)軸上數(shù)的排列順序(尤其是負數(shù))要正確。
六、課后思考
1.一個點從原點開始,按下列條件移動兩次后到達終點,說出它是表示什么數(shù)的點?(1)向右移動11個單位長度,再向左移動2個單位。2(2)向左移動3個單位長度,再向左移動2個單位長度。
2.?dāng)?shù)軸上表示3和-3的點 離開原點的距離是多少?這兩個點的位置有什么不同? 3.?dāng)?shù)軸上到原點的距離是5的點有幾個?它們分別表示什么數(shù)?
4.某數(shù)軸的單位長度是1cm,若在這個數(shù)軸上隨意畫一條長100cm的線段ab,則線段ab蓋住的整數(shù)點有()
a.99個或100個
b.100個或101個
c.99個或101個
d.99個、100個或101個
初中數(shù)學(xué)教學(xué)設(shè)計12
一、教材分析
反比例函數(shù)是初中階段所要學(xué)習(xí)的三種函數(shù)中的一種,是一類比較簡單但很重要的函數(shù),現(xiàn)實生活中充滿了反比例函數(shù)的例子。因此反比例函數(shù)的概念與意義的教學(xué)是基礎(chǔ)。
二、學(xué)情分析
由于之前學(xué)習(xí)過函數(shù),學(xué)生對函數(shù)概念已經(jīng)有了一定的認識能力,另外在前一章我們學(xué)習(xí)過分式的知識,因此為本節(jié)課的教學(xué)奠定的一定的基礎(chǔ)。
三、教學(xué)目標
知識目標:理解反比例函數(shù)意義;能夠根據(jù)已知條件確定反比例函數(shù)的表達式.
解決問題:能從實際問題中抽象出反比例函數(shù)并確定其表達式. 情感態(tài)度:讓學(xué)生經(jīng)歷從實際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實際.
四、教學(xué)重難點
重點:理解反比例函數(shù)意義,確定反比例函數(shù)的表達式.
難點:反比例函數(shù)表達式的確立.
五、教學(xué)過程
(1)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的全程運行時間t(單位:h)的變化而變化;
。2)某住宅小區(qū)要種植一個面積1000m2的矩形草坪,草坪的長y(單
位:m)隨寬x(單位:m)的變化而變化。
請同學(xué)們寫出上述函數(shù)的表達式
14631000(2)y= tx
k可知:形如y= (k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù),其中xx(1)v=
是自變量,y是函數(shù)。
此過程的目的在于讓學(xué)生從實際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實際. 由于是分式,當(dāng)x=0時,分式無意義,所以x≠0。
當(dāng)y= 中k=0時,y=0,函數(shù)y是一個常數(shù),通常我們把這樣的函數(shù)稱為常函數(shù)。此時y就不是反比例函數(shù)了。
舉例:下列屬于反比例函數(shù)的是
。1)y= (2)xy=10 (3)y=k-1x (4)y= -
此過程的目的是通過分析與練習(xí)讓學(xué)生更加了解反比例函數(shù)的概念 問已知y與x成反比例,y與x-1成反比例,y+1與x成反比例,y+1與x-1成反比例,將如何設(shè)其解析式(函數(shù)關(guān)系式)
已知y與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=
k x?1
k已知y+1與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1= xkxkxkxkx2x已知y與x-1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=
已知y+1與x-1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1= k x?1此過程的目的是為了讓學(xué)生更深刻的了解反比例函數(shù)的'概念,為以后在求函數(shù)解析式做好鋪墊。
例:已知y與x2反比例,并且當(dāng)x=3時y=4
。1)求出y和x之間的函數(shù)解析式
。2)求當(dāng)x=1.5時y的值
解析:因為y與x2反比例,所以設(shè)y?k,只要將k求出即可得到y(tǒng)x2
和x之間的函數(shù)解析式。之后引導(dǎo)學(xué)生書寫過程。能從實際問題中抽象出反比例函數(shù)并確定其表達式最后學(xué)生練習(xí)并布置作業(yè)
通過此環(huán)節(jié),加深對本節(jié)課所內(nèi)容的認識,以達到鞏固的目的。
六、評價與反思
本節(jié)課是在學(xué)生現(xiàn)有的認識基礎(chǔ)上進行講解,便于學(xué)生理解反比例函數(shù)的概念。而本節(jié)課的重點在于理解反比例函數(shù)意義,確定反比例函數(shù)的表達式.應(yīng)該對這一方面的內(nèi)容多練習(xí)鞏固。
初中數(shù)學(xué)教學(xué)設(shè)計13
講評目標:
1、通過講評,進一步鞏固本單元知識點。
2、通過對典型錯誤的剖析、矯正、幫助學(xué)生掌握正確的思考方法和解題策略。
學(xué)習(xí)目標:
認真細致進行錯例分析,用心思考,積極交流,總結(jié)經(jīng)驗,查漏補缺,體會數(shù)學(xué)方法和思想在解題中的應(yīng)用。
教學(xué)重點、難點:
典型錯誤的剖析與矯正。
講評過程:
一、整體回顧、介紹本次考試情況
1、本次考試平均分87.3分,及格率94.1%,優(yōu)秀率68.6%,最高分110分,最低分21分。
2、根據(jù)本次成績對前五名和進步比較大的學(xué)生進行表揚和鼓勵。成績前五名:李xx110分,翁x110分,張xx110分,楊x,王x,石xx,趙xx,時xx,沈xx,王xx107分。進步比較大的前五名學(xué)生:xxx。
二、教師分析學(xué)生在答題中存在的問題
1、部分學(xué)生對基礎(chǔ)知識掌握不扎實,沒有養(yǎng)成良好的學(xué)習(xí)習(xí)慣表現(xiàn)在不認真審題,不細心答題,如第6小題結(jié)果沒有化簡,第16小題沒有注意x與y的順序,第五大題的應(yīng)用題,有的同學(xué)沒有按題目的要求解,等。
2、部分學(xué)生計算的能力不強,表現(xiàn)為計算速度慢,計算的準確率低,不能靈活的使用運算律及一些運算方法。如第1小題判斷四個數(shù)能不能成比例的技巧,解比例時的一些運算方法,等。
3、不能運用所學(xué)知識靈活解決實際問題,分析問題、解決問題的能力有待提高。例如,解決實際問題的第2題,有部分學(xué)生按邊長和數(shù)量成反比例關(guān)系進行計算,解決實際問題的第3題,有的同學(xué)先算面積,然后再用比例尺算實際面積,有半數(shù)以上的學(xué)生對于附加題無從下手,等。
三、學(xué)生自我分析試卷
學(xué)生的有一些問題是因為一時的疏忽做錯;有一些是自己的'知識不夠牢固,經(jīng)過自己的學(xué)習(xí)是可以自己解決的;有一些問題經(jīng)過學(xué)生自己的再思考是可以自己解決的。象這一類的問題肯定可以學(xué)生自己處理好,那么就不需要老師來幫忙,只要給以時間和信心就可以了。
四、小組內(nèi)互幫互助學(xué)習(xí)
當(dāng)學(xué)生的問題自己解決掉自己能解決的之后,這時轉(zhuǎn)入學(xué)生的互幫互助階段,在小組內(nèi)由學(xué)生提出不會的問題由會做的同學(xué)進行講解。在這個階段由學(xué)生給學(xué)生講解達到學(xué)會的目的。組內(nèi)都不會的問題就由組長記錄并交給老師。
五、老師組織講解
根據(jù)各小組的統(tǒng)計,根據(jù)各組情況由多到少(不會的小組數(shù))的順序來解決。經(jīng)過了兩次糾正(自糾和互糾),學(xué)生的問題基本解決,剩下的問題再由老師組織,讓會做的小組給同學(xué)們講解。講解題思路,老師適當(dāng)補充、引導(dǎo)、評價。
六、老師檢查學(xué)生的掌握情況
學(xué)生自己的學(xué)習(xí)和相互幫助有沒有成效要靠自覺,老師可以檢查,拿出一部分比較有意義的,需要老師來講解的問題檢查學(xué)生,順便讓學(xué)生說出老師要說的話,然后有必要就補充、評價。讓學(xué)生說出每一道題的考察內(nèi)容解題技巧。
七、當(dāng)堂檢測
1、用2、4、8、4、寫出比例式:( )。
2、行駛的路程一定,則車輪的周長和它的轉(zhuǎn)數(shù)成( )比例。
3、一種精密零件長5毫米,把它畫圖上長6厘米,則比例尺是( )
4、若5X-7Y=0,X:Y=( )
5、在比例尺是1:200的圖上,一個長方形的長是4㎝,寬是3㎝,這個長方形的實際面積是( )平方米。
6、一間房子要用方磚鋪地,用邊長3分米的方磚,需要86塊。如果改用邊長是2分米的方磚要( )塊,當(dāng)堂檢測:
1、用2、4、8、4、寫出比例式:( )。
2、在A×B=C中,當(dāng)A一定時,B和C 成( )比例。
3、一種精密零件長5毫米,把它畫圖上長6厘米,則比例尺是( )
4、若5X-7Y=0,X:Y=( ) 5、在比例尺是1:200的圖上,一個長方形的長是4㎝,寬是3㎝,這個長方形的實際面積是( )平方米。
初中數(shù)學(xué)教學(xué)設(shè)計14
課題:12.3等腰三角形(第一課時)
教學(xué)內(nèi)容:新人教版八年級上冊十二章第三節(jié)等腰三角形的第一課時
任課教師:東灣中學(xué)李曉偉
設(shè)計理念:
教學(xué)的實質(zhì)是以教材中提供的素材或?qū)嶋H生活中的一些問題為載體,通過一系列探究互動過程,滲透分類討論、數(shù)形結(jié)合和方程的思想方法,達到學(xué)生知識的構(gòu)建、能力的培養(yǎng)、情感的陶冶、意識的創(chuàng)新。
㈠教材的地位和作用分析
等腰三角形是新人教版八年級上冊十二章第三節(jié)等腰三角形的第一課時的內(nèi)容。本節(jié)課是在前面學(xué)習(xí)了三角形的有關(guān)概念及性質(zhì)、軸對稱變換、全等三角形、垂直平分線和尺規(guī)作圖的基礎(chǔ)上,研究等腰三角形的定義及其重要性質(zhì),它既是前面所學(xué)知識的延伸,也是后面直角三角形、等邊三角形的知識的重要儲備,我們常常利用它證明角相等、線段相等、兩直線垂直,因此本節(jié)課具有承上啟下的重要作用。
另外,本堂課通過“活動探究”、“觀察—猜想—證明”等途徑,進一步培養(yǎng)學(xué)生的動手能力、觀察能力、分析能力和邏輯推理能力,因此,本堂課無論在知識上,還是在對學(xué)生能力的培養(yǎng)及情感教育等方面都有著十分重要的作用。
㈡教學(xué)內(nèi)容的分析
本堂課是等腰三角形的第一堂課,在認識等腰三角形的基礎(chǔ)上著重介紹“等腰三角形的性質(zhì)”。在教學(xué)設(shè)計的過程中,通過展示我國今年舉辦的精彩絕倫的盛會—上海世博會圖片中的等腰三角形,結(jié)合云南豐富的文化資源,讓學(xué)生感知生活中處處有數(shù)學(xué),感受圖形的和諧美、對稱美;通過學(xué)生感興趣的數(shù)學(xué)情景引入等腰三角形定義,提高學(xué)生的學(xué)習(xí)樂趣;讓學(xué)生通過動手剪等腰三角形、對折等腰三角形等活動,探究發(fā)現(xiàn)等腰三角形的性質(zhì),經(jīng)歷知識的“再發(fā)現(xiàn)”過程。在探究活動的過程中發(fā)展創(chuàng)新思維能力,改變學(xué)生的學(xué)習(xí)方式。在發(fā)現(xiàn)等腰三角形的性質(zhì)的基礎(chǔ)上,再經(jīng)過推理證明等腰三角形的性質(zhì),使得推理證明成為學(xué)生觀察、實驗、探究得出結(jié)論的自然延伸,有機地將等腰三角形的認識與等腰三角形的性質(zhì)的證明結(jié)合起來,從中發(fā)展學(xué)生推理能力。
在例題的選取上,注重聯(lián)系實際,激發(fā)學(xué)生學(xué)習(xí)興趣,讓學(xué)生主動用數(shù)學(xué)知識解決實際問題,同時滲透分類討論、數(shù)形結(jié)合和方程的數(shù)學(xué)思想方法,讓學(xué)生形成自我的數(shù)學(xué)思維和能力,發(fā)展學(xué)生應(yīng)用數(shù)學(xué)的意識。
二、目標及其解析
㈠教學(xué)目標:
知識技能:
1.了解等腰三角形的概念,認識等腰三角形是軸對稱圖形;2.經(jīng)歷探究等腰三角形性質(zhì)的過程,理解等腰三角形的性質(zhì)的證明;
3.掌握等腰三角形的性質(zhì),能運用等腰三角形的性質(zhì)解決生活中簡單的實際問題。
數(shù)學(xué)思考:
1.經(jīng)歷“觀察?實驗?猜想?論證”的過程,發(fā)展學(xué)生幾何直觀;
2.經(jīng)歷證明等腰三角形的性質(zhì)的過程,體會證明的必要性,發(fā)展合情推理能力和初步的演繹推理能力.
解決問題:
1.能運用等腰三角形的性質(zhì)解決生活中的實際問題,發(fā)展數(shù)學(xué)的應(yīng)用能力,獲得解決問題的經(jīng)驗;
2.在小組活動和探究過程中,學(xué)會與人合作,體會與他人合作的重要性.
情感態(tài)度:
1.經(jīng)歷“觀察?實驗?猜想?論證”的過程,體驗數(shù)學(xué)活動充滿著探究性和創(chuàng)造性,感受證明的必要性、證明過程的嚴謹性以及結(jié)論的確定性,并有克服困難和運用知識解決問題的成功體驗,建立學(xué)好數(shù)學(xué)的自信心;
2.經(jīng)歷運用等腰三角形解決實際問題的過程,認識數(shù)學(xué)是解決實際問題和進行交流的重要工具,了解數(shù)學(xué)對促進社會進步和發(fā)展人類理性精神的作用;
3.在獨立思考的基礎(chǔ)上,通過小組合作,積極參與對數(shù)學(xué)問題的討論,敢于發(fā)表自己的觀點,并尊重與理解他人的見解,在交流中獲益.
㈡教學(xué)重點:
等腰三角形的性質(zhì)及應(yīng)用。
㈢教學(xué)難點:
等腰三角形性質(zhì)的證明。
㈣解析
本堂課是等腰三角形的第一堂課,所以對于本堂課的知識目標的定位,主要考慮如下:1.了解等腰三角形的概念,認識等腰三角形是軸對稱圖形,在本堂課中要達到如下要求:⑴理解等腰三角形的定義,知道等腰三角形的頂角、底角、腰和底邊;⑵知道等腰三角形是軸對稱圖形,它有一條對稱軸,即:頂角角平分線(底邊上的高或底邊上的中線)所在直線;
2.經(jīng)歷探究等腰三角形性質(zhì)的過程,掌握等腰三角形的性質(zhì)的證明,在課堂中讓學(xué)生參與等腰三角形性質(zhì)的探索,鼓勵學(xué)生用規(guī)范的數(shù)學(xué)言語表述證明過程,發(fā)展學(xué)生的數(shù)學(xué)語言能力和演繹推理能力,引導(dǎo)學(xué)生完成對等腰三角形的性質(zhì)的證明;
3.會利用等腰三角形的性質(zhì)解決簡單的實際問題,本堂課要達到以下要求:掌握等腰三角形的'性質(zhì),會利用等腰三角形的性質(zhì)解決簡單的實際問題。
三、問題診斷分析
1.在這堂課中,學(xué)生可能遇到的第一個困難是等腰三角形性質(zhì)的發(fā)現(xiàn),特別是等腰三角形頂角的角平分線、底邊上的中線、底邊上的高相互重合這一性質(zhì),解決這一問題教師主要借助等腰三角形對稱性的研究,并引導(dǎo)學(xué)生理解“重合”這個詞的涵義。
2.這堂課學(xué)生可能遇到的第二個問題是證明等腰三角形的性質(zhì),這一問題主要有三個原因:第一學(xué)生剛接觸幾何證明不久,對數(shù)學(xué)語言表達方式還不熟悉;這一困難,并不是一堂課就能解決的,而要在以后學(xué)習(xí)中幫助學(xué)生增強數(shù)學(xué)語言運用的能力,能有條理地、清晰地闡述自己的觀點。在這堂課中我通過等腰三角形性質(zhì)的證明,鼓勵學(xué)生運用規(guī)范的數(shù)學(xué)語言來表述,使學(xué)生數(shù)學(xué)語言能力和演繹推理能力得到提升;第二是添加輔助線的問題,這也是學(xué)生在證明中的一個難點。要解決這一問題,我借助等腰三角形是軸對稱圖形,通過研究等腰三角形的對稱軸,讓學(xué)生理解三種添加輔助線的方法,即作頂角角平分線、底邊上的高或底邊上的中線;第三是證明等腰三角形頂角角平分線、底邊上的中線、底邊上的高互相重合這一性質(zhì),要突破這一難點,我采用先證明等腰三角形兩底角相等這一性質(zhì),為學(xué)生搭一個臺階,更好地解決這個難點。
3.這堂課中學(xué)生可能遇到的第三個問題是對等腰三角形的性質(zhì)的應(yīng)用,特別是等腰三角形頂角的角平分線、底邊上的中線、底邊上的高相互重合這一性質(zhì)的應(yīng)用;所以我在設(shè)計
課堂練習(xí)時,注重數(shù)學(xué)知識與生活實際的聯(lián)系,提高學(xué)生數(shù)學(xué)學(xué)習(xí)的興趣,讓學(xué)生主動運用數(shù)學(xué)知識解決實際問題,并通過練習(xí)滲透分類討論、數(shù)形結(jié)合和方程的數(shù)學(xué)思想方法,讓學(xué)生形成自我的數(shù)學(xué)思維和能力,發(fā)展學(xué)生應(yīng)用數(shù)學(xué)的意識。
四、教法、學(xué)法:
教法:
常言道:“教必有法,教無定法”。所以我針對八年級學(xué)生的心理特點和認知能力水平,大膽應(yīng)用生活中的素材,并作了精心的安排,充分體現(xiàn)數(shù)學(xué)是源于實踐又運用于生活。因此,本堂課的教學(xué)中,我以學(xué)生為主體,讓學(xué)生積極思維,勇于探索,主動地獲取知識。同時,采用了現(xiàn)代化教學(xué)技術(shù),激發(fā)學(xué)生的學(xué)習(xí)興趣,使整個課堂“活”起來,提高課堂效率。本堂課以生活中的一些例子為中心,讓學(xué)生親自嘗試,接受問題的挑戰(zhàn),充分展示自己的觀點和見解,給學(xué)生創(chuàng)設(shè)一個寬松愉快的學(xué)習(xí)氛圍,讓學(xué)生體驗成功的快樂,為終身學(xué)習(xí)和發(fā)展打打下堅實的基礎(chǔ)。
本堂課的設(shè)計是以課程標準和教材為依據(jù),采用發(fā)現(xiàn)式教學(xué)。遵循因材施教的原則,堅持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動性。教學(xué)過程中,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗知識的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維。同時,注意加強對學(xué)生的啟發(fā)和引導(dǎo),鼓勵培養(yǎng)學(xué)生大膽猜想,小心求證的科學(xué)研究的思想。
學(xué)法:
學(xué)生都渴望與他人交流,合作探究可使學(xué)生感受到合作的重要和團隊的精神力量,增強集體意識,所以本課采用小組合作的學(xué)習(xí)方式,讓學(xué)生遵循“情景問題?實踐探究?證明結(jié)論?解決實際問題”的主線進行學(xué)習(xí)。讓學(xué)生從活動中去觀察、探索、歸納知識,沿著知識發(fā)生,發(fā)展的脈絡(luò),學(xué)生經(jīng)過自己親身的實踐活動,形成自己的經(jīng)驗,產(chǎn)生對結(jié)論的感知,實現(xiàn)對知識意義的主動構(gòu)建。這不僅讓學(xué)生對所學(xué)內(nèi)容留下了深刻的印象,而且能力得到培養(yǎng),素質(zhì)得以提高,充分地調(diào)動學(xué)生學(xué)習(xí)的熱情,讓學(xué)生學(xué)會自主學(xué)習(xí),學(xué)會探索問題的方法。
五、教學(xué)支持條件分析
在本堂課中,準備利用長方形紙片、剪刀、圓規(guī)和直尺等工具,剪出等腰三角形,利用等腰三角形,通過對折、多媒體動畫演示等方法發(fā)現(xiàn)等腰三角形的性質(zhì),并且借助多媒體信息技術(shù)與實際動手操作加強對所學(xué)知識的理解和運用。
六、教學(xué)基本流程
七、教學(xué)過程設(shè)計
初中數(shù)學(xué)教學(xué)設(shè)計15
[教學(xué)目標]
1.會說出怎樣的兩個圖形是全等形,并會用符號語言表示兩個三角形全等。
2.知道全等三角形的有關(guān)概念,會在全等三角形中正確地找出對應(yīng)頂點、對應(yīng)邊、對應(yīng)角。
3.會說出全等三角形的對應(yīng)邊、對應(yīng)角相等的性質(zhì)。
此外,通過把兩個重合的三角形變換其中一個的位置,使它們呈現(xiàn)各種不同位置的活動,讓學(xué)生從中了解并體會圖形變換的思想,逐步培養(yǎng)學(xué)生
動態(tài)的研究幾何圖形的意思。
[引導(dǎo)性材料]
我們身邊經(jīng)常看到"一模一樣"的圖形,比如同一版面的記念郵票,同一版面的人民幣、用兩張紙疊在一起剪出的兩張窗花等,請大家舉出這類圖形的例子。
說明:讓學(xué)生在舉出實際例子以及對所舉例子的辨析中獲得對全等圖形盡可能多的精確的感知。
[教學(xué)設(shè)計]
問題1:幾何中,我們把上述所例舉的"一模一樣"的圖形叫做"全等形",以下是描述全等形的三種不同的說法,你認為哪種說法是恰當(dāng)?shù)?(l)形狀相同的兩個圖形叫全等形。
(2)大小相等的兩個圖形叫全等形。
(3)能夠完全重合的兩個圖形叫全等形。
(學(xué)生閱讀課本第21頁,全等三角形的有關(guān)概念、全等三解形的表示方法。)操作和觀察(學(xué)生用兩塊透明塑料片疊合在一起,任意剪兩個全等的三角形,教師制作兩個全等三角形的復(fù)合投影片演示。)(1)將重合的兩塊全等三角形塑料片中的一個沿著一邊所在的直線移動,觀察移動過程中這兩個三角形有哪幾種不同位置?畫出這兩個全等三角形不同位置的組合圖形。
(2)圖是上述移動過程中的兩個全等三角形組合的圖形,說出它們的對應(yīng)頂點、對應(yīng)邊、對應(yīng)角。
(3)將重合的兩塊三角形塑料片,以一邊所在的直線為軸,把其中一個三角形翻折180,請你畫出翻折后的兩個全等三角形組合的圖形。
(4)將兩塊全等的三角形塑料片拼合成如圖中的圖形,并指出它們的對應(yīng)頂點、對應(yīng)邊、對應(yīng)角。
[小結(jié)]
1.識別全等三角形的對應(yīng)邊、對應(yīng)角的關(guān)鍵是正確識別它們的對應(yīng)頂點。
2.用全等三變換的方法觀察圖形,有助于正確、迅速的從復(fù)雜圖形中識別出全等三角形。
[作業(yè)]課本組第2、3、4題。
初中數(shù)學(xué)實踐課教案設(shè)計三一、教材分析本節(jié)課是人民教育出版社義務(wù)教育課程標準實驗教科書(六三學(xué)制)七年級下冊第七章第三節(jié)多邊形內(nèi)角和。
二、教學(xué)目標1、知識目標:了解多邊形內(nèi)角和公式。
2、數(shù)學(xué)思考:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學(xué)生體會從特殊到一般的認識問題的方法。
3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
4、情感態(tài)度目標:通過猜想、推理活動感受數(shù)學(xué)活動充滿著探索以及
數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。
三、教學(xué)重、難點重點:探索多邊形內(nèi)角和。
難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法五、教具、學(xué)具教具:多媒體課件學(xué)具:三角板、量角器六、教學(xué)媒體:大屏幕、實物投影七、教學(xué)過程:
(一)創(chuàng)設(shè)情境,設(shè)疑激思師:大家都知道三角形的內(nèi)角和是180o,那么四邊形的內(nèi)角和,你知道嗎?活動一:探究四邊形內(nèi)角和。
在獨立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。
方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360o。
方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360o。
接下來,教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。
師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
活動二:探究五邊形、六邊形、十邊形的內(nèi)角和。
學(xué)生先獨立思考每個問題再分組討論。
關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。
(2)學(xué)生能否采用不同的方法。
學(xué)生分組討論后進行交流(五邊形的內(nèi)角和)方法1:把五邊形分成三個三角形,3個180o的和是540o。
方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180o的和減去一個周角360o。結(jié)果得540o。
方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180o的和減去一個平角180o,結(jié)果得540o。
方法4:把五邊形分成一個三角形和一個四邊形,然后用180o加上360o,結(jié)果得540o。
師:你真聰明!做到了學(xué)以致用。
交流后,學(xué)生運用幾何畫板演示并驗證得到的方法。
得到五邊形的內(nèi)角和之后,同學(xué)們又認真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720o,十邊形內(nèi)角和是1440o。
(二)引申思考,培養(yǎng)創(chuàng)新師:通過前面的.討論,你能知道多邊形內(nèi)角和嗎?活動三:探究任意多邊形的內(nèi)角和公式。
思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?(2)多邊形的邊數(shù)與內(nèi)角和的關(guān)系?
(3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關(guān)系?學(xué)生結(jié)合思考題進行討論,并把討論后的結(jié)果進行交流。
發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180o的和,五邊形內(nèi)角和是3個180o的和,六邊形內(nèi)角和是4個180o的和,十邊形內(nèi)角和是8個180o的和。
發(fā)現(xiàn)2:多邊形的邊數(shù)增加1,內(nèi)角和增加180o。
發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
得出結(jié)論:多邊形內(nèi)角和公式:(n-2)180。
(三)實際應(yīng)用,優(yōu)勢互補
1、口答:
(1)七邊形內(nèi)角和xx
(2)九邊形內(nèi)角和xx
(3)十邊形內(nèi)角和xx
2、搶答:
(1)一個多邊形的內(nèi)角和等于1260o,它是幾邊形?
(2)一個多邊形的內(nèi)角和是1440o,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是xx。
3、討論回答:一個多邊形的內(nèi)角和比四邊形的內(nèi)角和多540o,并且這個多邊形的各個內(nèi)角都相等,這個多邊形每個內(nèi)角等于多少度?(四)概括存儲學(xué)生自己歸納總結(jié):
1、多邊形內(nèi)角和公式
2、運用轉(zhuǎn)化思想解決數(shù)學(xué)問題
3、用數(shù)形結(jié)合的思想解決問題(五)作業(yè):練習(xí)冊第93頁1、2、3
八、教學(xué)反思:
1、教的轉(zhuǎn)變本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學(xué)生自覺探究數(shù)學(xué)問題,體驗發(fā)現(xiàn)的樂趣。
2、學(xué)的轉(zhuǎn)變學(xué)生的角色從學(xué)會轉(zhuǎn)變?yōu)闀䦟W(xué)。本節(jié)課學(xué)生不是停留在學(xué)會課本知識層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉(zhuǎn)變整節(jié)課以"流暢、開放、合作、隱導(dǎo)"為基本特征,教師對學(xué)生的思維減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以"對話"、"討論"為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學(xué)生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
【初中數(shù)學(xué)教學(xué)設(shè)計】相關(guān)文章:
初中數(shù)學(xué)教學(xué)設(shè)計02-01
初中數(shù)學(xué)教學(xué)設(shè)計04-29
數(shù)學(xué)初中教學(xué)設(shè)計06-24
初中數(shù)學(xué)優(yōu)秀教學(xué)設(shè)計02-14
初中數(shù)學(xué)教學(xué)設(shè)計模板08-12
初中數(shù)學(xué)教學(xué)設(shè)計優(yōu)秀09-19
(精品)初中數(shù)學(xué)教學(xué)設(shè)計07-21
初中數(shù)學(xué)教學(xué)設(shè)計(通用)07-09