亚洲国产一区二区三区精品,亚洲国产精品国自产拍AV,日本免费不卡v,国产精品亚洲第一页

<sub id="61a2t"><input id="61a2t"><em id="61a2t"></em></input></sub>

    1. <legend id="61a2t"></legend>
    2. 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      時(shí)間:2024-06-17 18:31:44 總結(jié) 投訴 投稿

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

        總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性的經(jīng)驗(yàn)方法以及結(jié)論的書面材料,它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運(yùn)用這些規(guī)律,讓我們來為自己寫一份總結(jié)吧。那么你知道總結(jié)如何寫嗎?下面是小編精心整理的高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎大家分享。

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

        空間角問題

       。1)直線與直線所成的角

       、賰善叫兄本所成的角:規(guī)定為0。

        ②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

        ③兩條異面直線所成的角:過空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線a,b,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

       。2)直線和平面所成的角

       、倨矫娴钠叫芯與平面所成的角:規(guī)定為0。

       、谄矫娴拇咕與平面所成的角:規(guī)定為90。

       、燮矫娴男本與平面所成的角:平面的.一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。

        求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”。

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

        棱錐

        棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐

        棱錐的的性質(zhì):

        (1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

        (2)平行于底面的截面與底面是相似的'多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

        正棱錐

        正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

        正棱錐的性質(zhì):

        (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

        (2)多個(gè)特殊的直角三角形

        esp:

        a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

        b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

        高一數(shù)學(xué)第三章函數(shù)的應(yīng)用知識(shí)點(diǎn)總結(jié)

        一、方程的根與函數(shù)的零點(diǎn)

        1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù)yf(x)(xD),把使f(x)0成立的實(shí)數(shù)x叫做函數(shù)yf(x)(xD)的零點(diǎn)。

        2、函數(shù)零點(diǎn)的意義:函數(shù)yf(x)的零點(diǎn)就是方程f(x)0實(shí)數(shù)根,亦即函數(shù)

        yf(x)的圖象與x軸交點(diǎn)的橫坐標(biāo)。

        即:方程f(x)0有實(shí)數(shù)根函數(shù)yf(x)的圖象與x軸有交點(diǎn)函數(shù)yf(x)有零點(diǎn).

        3、函數(shù)零點(diǎn)的求法:

        1(代數(shù)法)求方程f(x)0的實(shí)數(shù)根;○

        2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)yf(x)的圖象○

        聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

        零點(diǎn)存在性定理:如果函數(shù)y=f(x)在區(qū)間〔a,b〕上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根。先判定函數(shù)單調(diào)性,然后證明是否有f(a)f(b)第三章函數(shù)的應(yīng)用習(xí)題

        一、選擇題

        1.下列函數(shù)有2個(gè)零點(diǎn)的是()

        222y3x10y4x5x10yx3x5y4x4x1A、B、C、D、22.用二分法計(jì)算3x3x80在x(1,2)內(nèi)的根的過程中得:f(1)0,f(1.5)0,

        f(1.25)0,則方程的根落在區(qū)間()

        A、(1,1.5)B、(1.5,2)C、(1,1.25)D、(1.25,1.5)

        3.若方程axxa0有兩個(gè)解,則實(shí)數(shù)a的取值范圍是A、(1,)B、(0,1)C、(0,)D、

        4.函數(shù)f(x)=lnx-2x的零點(diǎn)所在的大致區(qū)間是()A.(1,2)B.2,eC.e,3D.e,

        5.已知方程x3x10僅有一個(gè)正零點(diǎn),則此零點(diǎn)所在的區(qū)間是()

        A.(3,4)B.(2,3)C.(1,2)D.(0,1)

        6.函數(shù)f(x)lnx2x6的零點(diǎn)落在區(qū)間()A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)

        7.已知函數(shù)

        fx的圖象是不間斷的,并有如下的`對(duì)應(yīng)值表:x1234567fx8735548那么函數(shù)在區(qū)間(1,6)上的零點(diǎn)至少有()個(gè)A.5B.4C.3D.28.方程2x1x5的解所在的區(qū)間是A(0,1)B(1,2)C(2,3)D(3,4)

        9.方程4x35x60的根所在的區(qū)間為A、(3,2)B、(2,1)C、(1,0)D、(0,1)

        10.已知f(x)2x22x,則在下列區(qū)間中,f(x)0有實(shí)數(shù)解的是()

       。

       。ǎ

        ()

       。(A)(-3,-2)(B)(-1,0)(C)(2,3)(D)(4,5)11.根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-2=0的一個(gè)根所在的區(qū)間為()

        xexx+2-10.37101212.72327.394320.095A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12、方程

        x12x根的個(gè)數(shù)為()

        A、0B、1C、2D、3二、填空題

        13.下列函數(shù):1)y=lgx;2)y2;3)y=x2;4)y=|x|-1;其中有2個(gè)零點(diǎn)的函數(shù)的序號(hào)是。

        x214.若方程3x2的實(shí)根在區(qū)間m,n內(nèi),且m,nZ,nm1,

        x則mn.

        222f(x)(x1)(x2)(x2x3)的零點(diǎn)是15、函數(shù)(必須寫全所有的零點(diǎn))。

        擴(kuò)展閱讀:高中數(shù)學(xué)必修一第三章函數(shù)的應(yīng)用知識(shí)點(diǎn)總結(jié)

        第三章函數(shù)的應(yīng)用

        一、方程的根與函數(shù)的零點(diǎn)

        1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù)yf(x)(xD),把使f(x)0成立的實(shí)數(shù)x叫做函數(shù)yf(x)(xD)的零點(diǎn)。

        2、函數(shù)零點(diǎn)的意義:函數(shù)yf(x)的零點(diǎn)就是方程f(x)0實(shí)數(shù)根,亦即函數(shù)

        yf(x)的圖象與x軸交點(diǎn)的橫坐標(biāo)。

        即:方程f(x)0有實(shí)數(shù)根函數(shù)yf(x)的圖象與x軸有交點(diǎn)函數(shù)yf(x)有零點(diǎn).

        3、函數(shù)零點(diǎn)的求法:

        1(代數(shù)法)求方程f(x)0的實(shí)數(shù)根;○

        2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)yf(x)的圖象聯(lián)系起來,○

        并利用函數(shù)的性質(zhì)找出零點(diǎn).

        4、基本初等函數(shù)的零點(diǎn):

        ①正比例函數(shù)ykx(k0)僅有一個(gè)零點(diǎn)。

        k(k0)沒有零點(diǎn)。x③一次函數(shù)ykxb(k0)僅有一個(gè)零點(diǎn)。

       、诜幢壤瘮(shù)y④二次函數(shù)yax2bxc(a0).

        (1)△>0,方程ax2bxc0(a0)有兩不等實(shí)根,二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

       。2)△=0,方程ax2bxc0(a0)有兩相等實(shí)根,二次函數(shù)的圖象與x軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

       。3)△<0,方程ax2bxc0(a0)無實(shí)根,二次函數(shù)的圖象與x軸無交點(diǎn),二次函數(shù)無零點(diǎn).

       、葜笖(shù)函數(shù)ya(a0,且a1)沒有零點(diǎn)。⑥對(duì)數(shù)函數(shù)ylogax(a0,且a1)僅有一個(gè)零點(diǎn)1.

       、邇绾瘮(shù)yx,當(dāng)n0時(shí),僅有一個(gè)零點(diǎn)0,當(dāng)n0時(shí),沒有零點(diǎn)。

        5、非基本初等函數(shù)(不可直接求出零點(diǎn)的較復(fù)雜的函數(shù)),函數(shù)先把fx轉(zhuǎn)化成,這另fx0,再把復(fù)雜的函數(shù)拆分成兩個(gè)我們常見的函數(shù)y1,y2(基本初等函數(shù))個(gè)函數(shù)圖像的交點(diǎn)個(gè)數(shù)就是函數(shù)fx零點(diǎn)的個(gè)數(shù)。

        6、選擇題判斷區(qū)間a,b上是否含有零點(diǎn),只需滿足fafb0。Eg:試判斷方程xx2x10在區(qū)間[0,2]內(nèi)是否有實(shí)數(shù)解?并說明理由。

        1

        42x7、確定零點(diǎn)在某區(qū)間a,b個(gè)數(shù)是唯一的條件是:①fx在區(qū)間上連續(xù),且fafb0②在區(qū)間a,b上單調(diào)。Eg:求函數(shù)f(x)2xlg(x1)2的零點(diǎn)個(gè)數(shù)。

        8、函數(shù)零點(diǎn)的性質(zhì):

        從“數(shù)”的角度看:即是使f(x)0的實(shí)數(shù);

        從“形”的角度看:即是函數(shù)f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo);

        若函數(shù)f(x)的圖象在xx0處與x軸相切,則零點(diǎn)x0通常稱為不變號(hào)零點(diǎn);若函數(shù)f(x)的圖象在xx0處與x軸相交,則零點(diǎn)x0通常稱為變號(hào)零點(diǎn).

        Eg:一元二次方程根的分布討論

        一元二次方程根的分布的基本類型

        2axbxc0(a0)的兩實(shí)根為x1,x2,且x1x2.設(shè)一元二次方程

        k為常數(shù),則一元二次方程根的k分布(即x1,x2相對(duì)于k的位置)或根在區(qū)間上的

        分布主要有以下基本類型:

        表一:(兩根與0的大小比較)

        分布情況兩個(gè)負(fù)根即兩根都小于0兩個(gè)正根即兩根都大于0一正根一負(fù)根即一個(gè)根小于0,一個(gè)大于0x10,x20x10,x20x10x2a0)大致圖象(得出的結(jié)論0b02af000b02af00f00

        大致圖象(a0)得出的結(jié)論0b02af000b02aaf000b02af000b02aaf00f00(不綜討合論結(jié)a論)

        af00表二:(兩根與k的大小比較)

        分布情況兩根都小于k即兩根都大于k即一個(gè)根小于k,一個(gè)大于k即x1k,x2kx1k,x2kx1kx2a0)大致圖象(kkk得出的結(jié)論0bk2afk00bk2afk0fk0大致圖象(a0)得出的結(jié)論0bk2afk00bk2aafk00bk2afk00bk2aafk0fk0(不綜討合論結(jié)a論)a0)afk0分布情況大致圖象(得出的結(jié)論表三:(根在區(qū)間上的分布)

        兩根都在m,n內(nèi)兩根有且僅有一根在m,n一根在m,n內(nèi),另一根在p,q內(nèi)(有兩種情況,只畫了一種)內(nèi),mnpq0fm0fn0bmn2afmfn0fm0fn0fmfn0fp0fq0fpfq0或

        大致圖象(a0)得出的結(jié)論0fm0fn0bmn2a綜合結(jié)論fmfn0fm0fn0fmfn0fp0fq0fpfq0或fmfn0fpfq0(a不)討論

        fmfn0Eg:(1)關(guān)于x的方程x22(m3)x2m140有兩個(gè)實(shí)根,且一個(gè)大于1,一個(gè)小于1,求m的取值范圍?

       。2)關(guān)于x的方程x2(m3)x2m140有兩實(shí)根在[0,4]內(nèi),求m的取值范圍?

        2(3)關(guān)于x的方程mx2(m3)x2m140有兩個(gè)實(shí)根,且一個(gè)大于4,一個(gè)小于4,求m的取值范圍?

        9、二分法的定義

        對(duì)于在區(qū)間[a,b]上連續(xù)不斷,且滿足f(a)f(b)0的函數(shù)

        yf(x),通過不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,

        使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法.

        10、給定精確度ε,用二分法求函數(shù)f(x)零點(diǎn)近似值的步驟:(1)確定區(qū)間[a,b],驗(yàn)證f(a)f(b)0,給定精度;(2)求區(qū)間(a,b)的中點(diǎn)x1;(3)計(jì)算f(x1):

       、偃鬴(x1)=0,則x1就是函數(shù)的零點(diǎn);

       、谌鬴(a)f(x1)14、根據(jù)散點(diǎn)圖設(shè)想比較接近的可能的函數(shù)模型:一次函數(shù)模型:f(x)kxb(k0);二次函數(shù)模型:g(x)ax2bxc(a0);冪函數(shù)模型:h(x)axb(a0);

        指數(shù)函數(shù)模型:l(x)abxc(a0,b>0,b1)

        利用待定系數(shù)法求出各解析式,并對(duì)各模型進(jìn)行分析評(píng)價(jià),選出合適的函數(shù)模型

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

        解三角形

        (1)正弦定理和余弦定理

        掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問題.

        (2)應(yīng)用

        能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問題.

        數(shù)列

        (1)數(shù)列的概念和簡(jiǎn)單表示法

       、倭私鈹(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式).

       、诹私鈹(shù)列是自變量為正整數(shù)的一類函數(shù).

        (2)等差數(shù)列、等比數(shù)列

       、倮斫獾炔顢(shù)列、等比數(shù)列的'概念.

       、谡莆盏炔顢(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式.

       、勰茉诰唧w的問題情境中,識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問題.

        ④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

        一、集合有關(guān)概念

        1. 集合的含義

        2. 集合的中元素的三個(gè)特性:

        (1) 元素的確定性,

        (2) 元素的互異性,

        (3) 元素的無序性,

        3.集合的表示:{ … } 如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

        (1) 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

        (2) 集合的表示方法:列舉法與描述法。

        ? 注意:常用數(shù)集及其記法:

        非負(fù)整數(shù)集(即自然數(shù)集) 記作:N

        正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R

        1) 列舉法:{a,b,c……}

        2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

        3) 語言描述法:例:{不是直角三角形的三角形}

        4) Venn圖:

        4、集合的分類:

        (1) 有限集 含有有限個(gè)元素的集合

        (2) 無限集 含有無限個(gè)元素的集合

        (3) 空集 不含任何元素的集合 例:{x|x2=-5}

        二、集合間的基本關(guān)系

        1.“包含”關(guān)系—子集

        注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

        反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

        2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

        實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

        即:① 任何一個(gè)集合是它本身的子集。A?A

        ②真子集:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)

       、廴绻 A?B, B?C ,那么 A?C

       、 如果A?B 同時(shí) B?A 那么A=B

        3. 不含任何元素的集合叫做空集,記為Φ

        規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

        ? 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

        三、集合的運(yùn)算

        運(yùn)算類型 交 集 并 集 補(bǔ) 集

        定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

        由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

        設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

        二、函數(shù)的有關(guān)概念

        1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

        注意:

        1.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。

        求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

        (1)分式的分母不等于零;

        (2)偶次方根的被開方數(shù)不小于零;

        (3)對(duì)數(shù)式的真數(shù)必須大于零;

        (4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.

        (5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

        (6)指數(shù)為零底不可以等于零,

        (7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.

        相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備)

        2.值域 : 先考慮其定義域

        (1)觀察法

        (2)配方法

        (3)代換法

        3. 函數(shù)圖象知識(shí)歸納

        (1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的'點(diǎn)(x,y),均在C上 .

        (2) 畫法

        A、 描點(diǎn)法:

        B、 圖象變換法

        常用變換方法有三種

        1) 平移變換

        2) 伸縮變換

        3) 對(duì)稱變換

        4.區(qū)間的概念

        (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

        (2)無窮區(qū)間

        (3)區(qū)間的數(shù)軸表示.

        5.映射

        一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A B為從集合A到集合B的一個(gè)映射。記作f:A→B

        6.分段函數(shù)

        (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

        (2)各部分的自變量的取值情況.

        (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

        補(bǔ)充:復(fù)合函數(shù)

        如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復(fù)合函數(shù)。

        二.函數(shù)的性質(zhì)

        1.函數(shù)的單調(diào)性(局部性質(zhì))

        (1)增函數(shù)

        設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1

        如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.

        注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

        (2) 圖象的特點(diǎn)

        如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

        (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

        (A) 定義法:

        ○1 任取x1,x2∈D,且x1

        ○2 作差f(x1)-f(x2);

        ○3 變形(通常是因式分解和配方);

        ○4 定號(hào)(即判斷差f(x1)-f(x2)的正負(fù));

        ○5 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

        (B)圖象法(從圖象上看升降)

        (C)復(fù)合函數(shù)的單調(diào)性

        復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

        注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

        8.函數(shù)的奇偶性(整體性質(zhì))

        (1)偶函數(shù)

        一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

        (2).奇函數(shù)

        一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

        (3)具有奇偶性的函數(shù)的圖象的特征

        偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

        利用定義判斷函數(shù)奇偶性的步驟:

        ○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱;

        ○2確定f(-x)與f(x)的關(guān)系;

        ○3作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).

        (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

        (3)利用定理,或借助函數(shù)的圖象判定 .

        9、函數(shù)的解析表達(dá)式

        (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.

        (2)求函數(shù)的解析式的主要方法有:

        1) 湊配法

        2) 待定系數(shù)法

        3) 換元法

        4) 消參法

        10.函數(shù)最大(小)值(定義見課本p36頁(yè))

        ○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值

        ○2 利用圖象求函數(shù)的最大(小)值

        ○3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:

        如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);

        如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

        1、點(diǎn)A在平面α內(nèi),記作A∈α;點(diǎn)B不在平面α內(nèi),記作B不屬于α。

        2、點(diǎn)P在直線l上,記作P∈l;點(diǎn)P在直線l外,記作P不屬于I。

        3、如果直線l上的所有點(diǎn)都在平面α內(nèi),就說直線l在平面α內(nèi),或者平面α經(jīng)過直線l,記作lα,否則說直線l在平面α外,記作l不屬于α。

        4、平面α、β相交于直線l,記作α∩β=l。

        5、直線a在平面α內(nèi)記作 aα

        公理

        公理一 如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上所有的點(diǎn)都在這個(gè)平面內(nèi)。

        公理二 如果不重合的兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條通過這個(gè)點(diǎn)的公共直線。

        公理三 經(jīng)過不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。

        推論

        推論一 經(jīng)過一條直線和這條直線外的一點(diǎn),有且只有一個(gè)平面。

        推論二 經(jīng)過兩條相交直線,有且只有一個(gè)平面。

        推論三 經(jīng)過兩條平行直線,有且只有一個(gè)平面。

        平面相交的判定

        如果兩個(gè)平面有一個(gè)公共點(diǎn),就說這兩個(gè)平面相交。

        線面平行的判定

        平面外的一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。

        平面平行的判定

        一 如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行。

        二 垂直于同一條直線的兩個(gè)平面平行。

        線面平行的性質(zhì)

        一條直線與一個(gè)平面平行,則過這條直線的.任一平面與此平面的交線平行。

        平面平行的性質(zhì)

        一 如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。

        二 如果一條直線在一個(gè)平面內(nèi),那么與此平面平行的平面與該直線平行。

        線面垂直的判定

        一 一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。

        二 如果一條直線垂直于一個(gè)平面,那么與這條直線平行的直線垂直于該平面。

        平面垂直的判定

        一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直。

        線面垂直的性質(zhì)

        一 垂直于同一個(gè)平面的兩條直線平行。

        二 若直線垂直于平面,則直線垂直于這個(gè)平面的所有直線。

        三平行于同一條直線的兩條直線互相平行。

        平面垂直的性質(zhì)

        兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直。

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

        1.高中數(shù)學(xué)函數(shù)函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于函數(shù)A中的任意一個(gè)數(shù)x,在函數(shù)B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從函數(shù)A到函數(shù)B的一個(gè)函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的函數(shù){f(x)|x∈A}叫做函數(shù)的值域.

        注意:

        函數(shù)定義域:能使函數(shù)式有意義的實(shí)數(shù)x的函數(shù)稱為函數(shù)的定義域。

        求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

        (1)分式的分母不等于零;

        (2)偶次方根的被開方數(shù)不小于零;

        (3)對(duì)數(shù)式的真數(shù)必須大于零;

        (4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.

        (5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的函數(shù).

        (6)指數(shù)為零底不可以等于零,(7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.

        ?相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致(兩點(diǎn)必須同時(shí)具備)

        2.高中數(shù)學(xué)函數(shù)值域:先考慮其定義域

        (1)觀察法

        (2)配方法

        (3)代換法

        3.函數(shù)圖象知識(shí)歸納

        (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的.點(diǎn)P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.

        (2)畫法

        A、描點(diǎn)法:

        B、圖象變換法

        常用變換方法有三種

        (1)平移變換

        (2)伸縮變換

        (3)對(duì)稱變換

        4.高中數(shù)學(xué)函數(shù)區(qū)間的概念

        (1)函數(shù)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

        (2)無窮區(qū)間

        5.映射

        一般地,設(shè)A、B是兩個(gè)非空的函數(shù),如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于函數(shù)A中的任意一個(gè)元素x,在函數(shù)B中都有確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個(gè)映射。記作“f(對(duì)應(yīng)關(guān)系):A(原象)B(象)”

        對(duì)于映射f:A→B來說,則應(yīng)滿足:

        (1)函數(shù)A中的每一個(gè)元素,在函數(shù)B中都有象,并且象是的;

        (2)函數(shù)A中不同的元素,在函數(shù)B中對(duì)應(yīng)的象可以是同一個(gè);

        (3)不要求函數(shù)B中的每一個(gè)元素在函數(shù)A中都有原象。

        6.高中數(shù)學(xué)函數(shù)之分段函數(shù)

        (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

        (2)各部分的自變量的取值情況.

        (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

        補(bǔ)充:復(fù)合函數(shù)

        如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

        空間點(diǎn)、直線、平面之間的位置關(guān)系

        以下知識(shí)點(diǎn)需要我們?nèi)ダ斫猓洃洝?/p>

        1、數(shù)學(xué)所說的直線是無限延伸的,沒有起點(diǎn),也沒有終點(diǎn)。

        2、數(shù)學(xué)所說的平面是無限延伸的,沒有起始線,也沒有終點(diǎn)線。

        3、公理1 如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)。

        4、過不在同一直線上的三點(diǎn),有且只有一個(gè)平面。

        5、如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一個(gè)過該點(diǎn)的公共直線。

        6、平行于同一條直線的`兩條直線平行。

        7、直線在平面內(nèi),因?yàn)橹本上有無數(shù)多個(gè)點(diǎn),平面上也有無數(shù)多個(gè)點(diǎn),因此用子集的符號(hào)表示直線在平面內(nèi)。

        8、直線與平面的位置關(guān)系,直線與直線的位置關(guān)系是本節(jié)課的重點(diǎn)和難點(diǎn)。

        9、做位置關(guān)系的題目,可以借助實(shí)物,直觀理解。

        一、直線與方程考試內(nèi)容及考試要求

        考試內(nèi)容:

        1.直線的傾斜角和斜率;直線方程的點(diǎn)斜式和兩點(diǎn)式;直線方程的一般式;

        2.兩條直線平行與垂直的條件;兩條直線的交角;點(diǎn)到直線的距離;

        考試要求:

        1.理解直線的傾斜角和斜率的概念,掌握過兩點(diǎn)的直線的斜率公式,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,并能根據(jù)條件熟練地求出直線方程。

        2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點(diǎn)到直線的距離公式能夠根據(jù)直

        線的方程判斷兩條直線的位置關(guān)系。

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

        歸納1

        1、“包含”關(guān)系—子集

        注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

        反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

        2、“相等”關(guān)系(5≥5,且5≤5,則5=5)

        實(shí)例:設(shè)A={x|x2—1=0}B={—1,1}“元素相同”

        結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

       、偃魏我粋(gè)集合是它本身的子集。AíA

        ②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

       、廴绻鸄íB,BíC,那么AíC

        ④如果AíB同時(shí)BíA那么A=B

        3、不含任何元素的集合叫做空集,記為Φ

        規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

        歸納2

        形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

        自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

        反比例函數(shù)圖像性質(zhì):

        反比例函數(shù)的圖像為雙曲線。

        由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對(duì)稱。

        另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

        上面給出了k分別為正和負(fù)(2和—2)時(shí)的函數(shù)圖像。

        當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

        當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

        反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

        知識(shí)點(diǎn):

        1、過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

        2、對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)

        歸納3

        方程的根與函數(shù)的零點(diǎn)

        1、函數(shù)零點(diǎn)的'概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

        2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)。

        3、函數(shù)零點(diǎn)的求法:

       。1)(代數(shù)法)求方程的實(shí)數(shù)根;

       。2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn)。

        4、二次函數(shù)的零點(diǎn):

       。1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn)。

        (2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn)。

        (3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn)。

        歸納3

        形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

        自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

        反比例函數(shù)圖像性質(zhì):

        反比例函數(shù)的圖像為雙曲線。

        由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對(duì)稱。

        另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

        如圖,上面給出了k分別為正和負(fù)(2和—2)時(shí)的函數(shù)圖像。

        當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

        當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

        反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

        知識(shí)點(diǎn):

        1、過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

        2、對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)

        歸納4

        冪函數(shù)的性質(zhì):

        對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

        首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=—k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

        排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

        排除了為0這種可能,即對(duì)于x<0x="">0的所有實(shí)數(shù),q不能是偶數(shù);

        排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

        總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

        如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

        在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

        在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

        而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

        由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況、

        可以看到:

       。1)所有的圖形都通過(1,1)這點(diǎn)。

       。2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

       。3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

        (4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

        (5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。

       。6)顯然冪函數(shù)無界。

        解題方法:換元法

        解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問題得到簡(jiǎn)化,這種方法叫換元法,換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對(duì)象,將問題移至新對(duì)象的知識(shí)背景中去研究,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡(jiǎn)單化,變得容易處理。

        換元法又稱輔助元素法、變量代換法。通過引進(jìn)新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結(jié)論聯(lián)系起來。或者變?yōu)槭煜さ男问,把?fù)雜的計(jì)算和推證簡(jiǎn)化。

        它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應(yīng)用。

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

        集合間的基本關(guān)系

        1.“包含”關(guān)系—子集

        注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

        2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

        實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同”

        結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

        A?① 任何一個(gè)集合是它本身的子集。A

        B那就說集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A

        C?C ,那么 A?B, B?③如果 A

        A 那么A=B?B 同時(shí) B?④ 如果A

        3. 不含任何元素的集合叫做空集,記為Φ

        規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

        集合的運(yùn)算

        1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

        記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

        2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的`并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

        3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

        4、全集與補(bǔ)集

        (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

        A}?S且 x? x?記作: CSA 即 CSA ={x

        (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來表示。

        (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

        求函數(shù)值域的方法:

        ①直接法:從自變量x的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡(jiǎn)單的'復(fù)合函數(shù);

       、趽Q元法:利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)求值域,適合根式內(nèi)外皆為一次式;

       、叟袆e式法:運(yùn)用方程思想,依據(jù)二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

       、芊蛛x常數(shù):適合分子分母皆為一次式(x有范圍限制時(shí)要畫圖);

       、輪握{(diào)性法:利用函數(shù)的單調(diào)性求值域;

       、迗D象法:二次函數(shù)必畫草圖求其值域;

        ⑦利用對(duì)號(hào)函數(shù)

       、鄮缀我饬x法:由數(shù)形結(jié)合,轉(zhuǎn)化距離等求值域。主要是含絕對(duì)值函數(shù)

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

        集合間的基本關(guān)系

        1!鞍标P(guān)系—子集

        注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

        反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

        2!跋嗟取标P(guān)系:A=B(5≥5,且5≤5,則5=5)

        實(shí)例:設(shè)A={x|x2—1=0}B={—1,1}“元素相同則兩集合相等”

        即:①任何一個(gè)集合是它本身的子集。AA

       、谡孀蛹喝绻鸄B,且AB那就說集合A是集合B的真子集,記作AB(或BA)

       、廴绻鸄B,BC,那么AC

       、苋绻鸄B同時(shí)BA那么A=B

        3。不含任何元素的集合叫做空集,記為Φ

        規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

        有n個(gè)元素的集合,含有2n個(gè)子集,2n—1個(gè)真子集

        集合的`運(yùn)算

        運(yùn)算類型交集并集補(bǔ)集

        定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集。記作AB(讀作‘A交B’),即AB={x|xA,且xB}。

        由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:AB(讀作‘A并B’),即AB={x|xA,或xB})。

        設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

        一、集合有關(guān)概念

        1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

        2、集合的中元素的三個(gè)特性:

        1.元素的確定性;2.元素的互異性;3.元素的無序性

        說明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

        (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

        (3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

        (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

        3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

        1.用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

        2.集合的表示方法:列舉法與描述法。

        二、集合間的基本關(guān)系

        1.“包含”關(guān)系—子集

        注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

        反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

        2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

        實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同”

        結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

       、偃魏我粋(gè)集合是它本身的子集。AíA

        ②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

        ③如果AíB,BíC,那么AíC

       、苋绻鸄íB同時(shí)BíA那么A=B

        3.不含任何元素的集合叫做空集,記為Φ

        規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

        三、集合的運(yùn)算

        1.交集的'定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

        記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

        2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

        3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

        一:函數(shù)及其表示

        知識(shí)點(diǎn)詳解文檔包含函數(shù)的概念、映射、函數(shù)關(guān)系的判斷原則、函數(shù)區(qū)間、函數(shù)的三要素、函數(shù)的定義域、求具體或抽象數(shù)值的函數(shù)值、求函數(shù)值域、函數(shù)的表示方法等

        1. 函數(shù)與映射的區(qū)別:

        2. 求函數(shù)定義域

        常見的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:

       、佼(dāng)f(x)為整式時(shí),函數(shù)的定義域?yàn)镽.

       、诋(dāng)f(x)為分式時(shí),函數(shù)的定義域?yàn)槭狗质椒帜覆粸榱愕膶?shí)數(shù)集合。

       、郛(dāng)f(x)為偶次根式時(shí),函數(shù)的定義域是使被開方數(shù)不小于0的實(shí)數(shù)集合。

        ④當(dāng)f(x)為對(duì)數(shù)式時(shí),函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實(shí)數(shù)集合。

       、萑绻鹒(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合,即求各部分有意義的實(shí)數(shù)集合的交集。

       、迯(fù)合函數(shù)的'定義域是復(fù)合的各基本的函數(shù)定義域的交集。

       、邔(duì)于由實(shí)際問題的背景確定的函數(shù),其定義域除上述外,還要受實(shí)際問題的制約。

        3. 求函數(shù)值域

        (1)、觀察法:通過對(duì)函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域;

        (2)、配方法;如果一個(gè)函數(shù)是二次函數(shù)或者經(jīng)過換元可以寫成二次函數(shù)的形式,那么將這個(gè)函數(shù)的右邊配方,通過自變量的范圍可以求出該函數(shù)的值域;

        (3)、判別式法:

        (4)、數(shù)形結(jié)合法;通過觀察函數(shù)的圖象,運(yùn)用數(shù)形結(jié)合的方法得到函數(shù)的值域;

        (5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進(jìn)而求出值域;

        (6)、利用函數(shù)的單調(diào)性;如果函數(shù)在給出的定義域區(qū)間上是嚴(yán)格單調(diào)的,那么就可以利用端點(diǎn)的函數(shù)值來求出值域;

        (7)、利用基本不等式:對(duì)于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;

        (8)、最值法:對(duì)于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;

        (9)、反函數(shù)法:如果函數(shù)在其定義域內(nèi)存在反函數(shù),那么求函數(shù)的值域可以轉(zhuǎn)化為求反函數(shù)的定義域。

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

        知識(shí)點(diǎn)1

        一、集合有關(guān)概念

        1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

        2、集合的中元素的三個(gè)特性:

        1、元素的確定性;

        2、元素的互異性;

        3、元素的無序性

        說明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

       。2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

        (3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

       。4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

        3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

        1、用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

        2、集合的表示方法:列舉法與描述法。

        注意。撼S脭(shù)集及其記法:

        非負(fù)整數(shù)集(即自然數(shù)集)記作:N

        正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

        關(guān)于“屬于”的概念

        集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

        列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上。

        描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。

       、僬Z言描述法:例:{不是直角三角形的三角形}

        ②數(shù)學(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

        4、集合的分類:

        1、有限集含有有限個(gè)元素的集合

        2、無限集含有無限個(gè)元素的集合

        3、空集不含任何元素的集合例:{x|x2=—5}

        知識(shí)點(diǎn)2

        I、定義與定義表達(dá)式

        一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

       。╝,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)

        則稱y為x的二次函數(shù)。

        二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

        II、二次函數(shù)的三種表達(dá)式

        一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

        頂點(diǎn)式:y=a(x—h)^2+k[拋物線的頂點(diǎn)P(h,k)]

        交點(diǎn)式:y=a(x—x?)(x—x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

        注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

        h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a

        III、二次函數(shù)的圖像

        在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

        IV、拋物線的性質(zhì)

        1、拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x=—b/2a。對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

        特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

        2、拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

        P(—b/2a,(4ac—b^2)/4a)

        當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2—4ac=0時(shí),P在x軸上。

        3、二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

        當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

        |a|越大,則拋物線的開口越小。

        知識(shí)點(diǎn)3

        1、拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線

        x=—b/2a。

        對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

        特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

        2、拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

        P(—b/2a,(4ac—b’2)/4a)

        當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)Δ=b’2—4ac=0時(shí),P在x軸上。

        3、二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

        當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

        |a|越大,則拋物線的開口越小。

        4、一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

        當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

        當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

        5、常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

        拋物線與y軸交于(0,c)

        6、拋物線與x軸交點(diǎn)個(gè)數(shù)

        Δ=b’2—4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

        Δ=b’2—4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

        Δ=b’2—4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=—b±√b’2—4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

        知識(shí)點(diǎn)4

        對(duì)數(shù)函數(shù)

        對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的'規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。

        右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:

        可以看到對(duì)數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。

       。1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。

       。2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。

       。3)函數(shù)總是通過(1,0)這點(diǎn)。

       。4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。

       。5)顯然對(duì)數(shù)函數(shù)。

        知識(shí)點(diǎn)5

        方程的根與函數(shù)的零點(diǎn)

        1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

        2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)。

        3、函數(shù)零點(diǎn)的求法:

        (1)(代數(shù)法)求方程的實(shí)數(shù)根;

        (2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn)。

        4、二次函數(shù)的零點(diǎn):

       。1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn)。

       。2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn)。

       。3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn)。

      【高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-31

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10-26

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納11-02

      高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)07-12

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(精選15篇)03-07

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(15篇)03-07

      高一知識(shí)點(diǎn)總結(jié)03-28

      高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)(15篇)07-12

      高一數(shù)學(xué)必修一函數(shù)圖像知識(shí)點(diǎn)總結(jié)07-13